: -r

Database Systems

A Practical Approach to Design, Implementation,
and Management

SIXTH EDITION

. | | ‘ 7 ® ® | J

Thomas Connolly * Carolyn Begg

ALWAYS LEARNING PEARSON

ONLINE ACCESS

Thank you for purchasing a new copy of Database Systems, Sixth Edition. Your textbook
includes one year of prepaid access to the book’s Companion Website. This prepaid
subscription provides you with full access to the following student support areas:

e online appendices
e tutorials on selected chapters
® DreamHome web implementation

Use a coin to scratch off the coating and reveal your student access code.
Do not use a knife or other sharp object as it may damage the code.

To access the Database Systems, Sixth Edition., Companion Website for the first time, you
will need to register online using a computer with an Internet connection and a web browser.
The process takes just a couple of minutes and only needs to be completed once.

1. Go to www.pearsonglobaleditions.com/connolly
2. Click on Companion Website.
3. Click on the Register button.

4. On the registration page, enter your student access code* found beneath the scratch-off
panel. Do not type the dashes. You can use lower- or uppercase.

5. Follow the on-screen instructions. If you need help at any time during the online
registration process, simply click the Need Help? icon.

6. Once your personal Login Name and Password are confirmed, you can begin using the
Database Systems Companion Website!

To log in after you have registered:

You only need to register for this Companion Website once. After that, you can log in any
time at www.pearsonglobaleditions.com/connolly by providing your Login Name and
Password when prompted.

*Important: The access code can only be used once. This subscription is valid for one year
upon activation and is not transferable. If this access code has already been revealed,

it may no longer be valid. If this is the case, you can purchase a subscription by going

to www.pearsonglobaleditions.com/connolly and following the on-screen

instructions.

DATABASE SYSTEMS

A Practical Approach to Design, Implementation, and Management

SIXTH EDITION
GLOBAL EDITION

DATABASE SYSTEMS

A Practical Approach to Design, Implementation, and Management

SIXTH EDITION
GLOBAL EDITION

THOMAS M. CONNOLLY | CAROLYN E. BEGG
UNIVERSITY OF THE WEST OF SCOTLAND

PEARSON

Boston Columbus Indianapolis New York San Francisco Upper Saddle River
Amsterdam Cape Town Dubai London Madrid Milan Munich Paris Montréal Toronto
Delhi Mexico City Sao Paulo Sydney Hong Kong Seoul Singapore TaiPei Tokyo

Editorial Director, ECS: Marcia Horton Senior Production Manufacturing

Head of Learning Asset Controller, Global Editions: Trudy Kimber
Acquisition, Global Editions: Laura Dent Manufacturing Buyer: Linda Sager
Acquisitions Editor: Matt Goldstein Art Director: Jayne Conte
Acquisitions Editor, Cover Designer: Lumina Datamatics
Global Editions: Subhasree Patra Text Designer: Susan Raymond
Program Manager: Kayla Smith-Tarbox Manager, Text Permissions: Tim Nicholls
Director of Marketing: Christy Lesko Text Permission Project Manager: Jenell Forschler
Marketing Manager: Yezan Alayan Cover Image: © Africa Studio/
Marketing Assistant: Jon Bryant Shutterstock
Director of Production: Erin Gregg Media Project Manager: Renata Butera
Senior Managing Editor: Scott Disanno Full-Service Project Management: Vasundhara Sawhney/
Senior Project Manager: Marilyn Lloyd Cenveo® Publisher
Media Producer, Global Editions: M Vikram Kumar Services

Project Editor, Global Editions: K.K. Neelakantan

Credits and acknowledgments borrowed from other sources and reproduced, with permission, in this textbook appear
on the Credits page at the end of the book.

Pearson Education Limited
Edinburgh Gate

Harlow

Essex CM20 2]JE

England

and Associated Companies throughout the world

Visit us on the World Wide Web at:

www.pearsonglobaleditions.com

© Pearson Education Limited 2015

The rights of Thomas Connolly and Carolyn Begg to be identified as the authors of this work have been asserted by
them in accordance with the Copyright, Designs and Patents Act 1988.

Authorized adaptation from the United States edition, entitled Database Systems: A Practical Approach to Design, Implementation, and
Management, 6th edition, ISBN 978-0-13-294326-0, by Thomas Connolly and Carolyn Begg, published by Pearson Education © 2015.

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any
form or by any means, electronic, mechanical, photocopying, recording or otherwise, without either the prior written
permission of the publisher or a license permitting restricted copying in the United Kingdom issued by the Copyright
Licensing Agency Ltd, Saffron House, 6-10 Kirby Street, London ECIN 8TS.

All trademarks used herein are the property of their respective owners. The use of any trademark in this text does not
vest in the author or publisher any trademark ownership rights in such trademarks, nor does the use of such trademarks
imply any affiliation with or endorsement of this book by such owners.

British Library Cataloguing-in-Publication Data
A catalogue record for this book is available from the British Library

10987654321
1514131211

ISBN 10: 1-292-06118-9
ISBN 13: 978-1-292-06118-4

Typeset by Cenveo Publishing Services.
Printed and bound by Courier Westford in The United States of America.

To Sheena, for her patience, understanding, and love.
To our beautiful children Kathryn, Michael and Stephen with all our love.
And to my brother, Francis, who died during the writing of this book.

Thomas M. Connolly

To my past, present, and future students at UWS.

Carolyn E. Begg

Brief Contents

Preface 35

Part | Background 49
Chapter 1 Introduction to Databases 51
Chapter 2 Database Environment 83
Chapter 3 Database Architectures and the Web 105
Part 2 The Relational Model and Languages 147
Chapter 4 The Relational Model 149
Chapter 5 Relational Algebra and Relational Calculus 167
Chapter 6 SQL: Data Manipulation 191
Chapter 7 SQL: Data Definition 233
Chapter 8 Advanced SQL 271
Chapter 9 Object-Relational DBMSs 291
Part 3 Database Analysis and Design 343
Chapter 10 Database System Development Lifecycle 345
Chapter 11 Database Analysis and the DreamHome Case Study 375
Chapter 12 Entity—Relationship Modeling 405
Chapter 13 Enhanced Entity—Relationship Modeling 433
Chapter 14 Normalization 451
Chapter 15 Advanced Normalization 481
Part 4 Methodology 501
Chapter 16 Methodology—Conceptual Database Design 503

Chapter 17 Methodology—Logical Database Design
for the Relational Model 527

Brief Contents

Chapter 18 Methodology—Physical Database Design
for Relational Databases 561

Chapter 19 Methodology—Monitoring and Tuning

the Operational System 585
Part 5 Selected Database Issues 605
Chapter 20 Security and Administration 607
Chapter 21 Professional, Legal, and Ethical Issues in Data
Management 641
Chapter 22 Transaction Management 667
Chapter 23 Query Processing 727
Part 6 Distributed DBMSs and Replication 783
Chapter 24 Distributed DBMSs—Concepts and Design 785
Chapter 25 Distributed DBMSs—Advanced Concepts 831
Chapter 26 Replication and Mobile Databases 875
Part 7 Object DBMSs 939
Chapter 27 Object-Oriented DBMSs—Concepts and Design 941
Chapter 28 Object-Oriented DBMSs—Standards and Systems 995
Part 8 The Web and DBMSs 1045
Chapter 29 Web Technology and DBMSs 1047
Chapter 30 Semistructured Data and XML 1129
Part 9 Business Intelligence 1221
Chapter 31 Data Warehousing Concepts 1223
Chapter 32 Data Warehousing Design 1257
Chapter 33 OLAP 1285

Chapter 34 Data Mining 1315

Brief Contents 9

Appendices 1329
A Users’ Requirements Specification for DreamHome Case Study A-1
B Other Case Studies B-1
C Alternative ER Modeling Notations C-1
D Summary of the Database Design Methodology
for Relational Databases D-1
E Introduction to Pyrrho: A Lightweight RDBMS E-1
F File Organizations and Indexes (Online) F-1
G When Is a DBMS Relational? (Online) G-1
H Commercial DBMSs: Access® and Oracle® (Online) H-1
I Programmatic SQL (Online) I-1
J Estimating Disk Space Requirements (Online) J-1
K Introduction to Object-Oriented Concepts (Online) K-1
L Example Web Scripts (Online) L-1
M Query-By-Example (QBE) (Online) M-1
N Third Generation Manifestos (Online) N-1
O Postgres—An Early ORDBMS (Online) O-1
References R-1
Further Reading FR-1

Index IN-1

Contents

Preface 35 i

]

]

]

=

Part | Background 49 =

]

]

Chapter | Introduction to Databases 51 @
1.1 Introduction 52
1.2 Traditional File-Based Systems 55
1.2.1 File-Based Approach 55
1.2.2 Limitations of the File-Based Approach 60
1.3 Database Approach 62
1.3.1 The Database 63
1.3.2 The Database Management System (DBMS) 64
1.3.3 (Database) Application Programs 65
1.3.4 Components of the DBMS Environment 66
1.3.5 Database Design: The Paradigm Shift 69
1.4 Roles in the Database Environment 69
1.4.1 Data and Database Administrators 69
1.4.2 Database Designers 70
1.4.3 Application Developers 71
1.4.4 End-Users 71
1.5 History of Database Management Systems 71
1.6 Advantages and Disadvantages of DBMSs 75
Chapter Summary 79
Review Questions 80
Exercises 80
Chapter 2 Database Environment 83
2.1 The Three-Level ANSI-SPARC Architecture 84
2.1.1 External Level 85
2.1.2 Conceptual Level 86
2.1.3 Internal Level 86
2.1.4 Schemas, Mappings, and Instances 87
2.1.5 Data Independence 88
2.2 Database Languages 89
2.2.1 The Data Definition Language (DDL) 90

11

12

Contents

2.3

2.4

Chapter 3
3.1

3.2

3.3
3.4
3.5

3.6
3.7

Part 2

Chapter 4
4.1
4.2

2.2.2 The Data Manipulation Language (DML)
2.2.3 Fourth-Generation Languages (4GLs)

Data Models and Conceptual Modeling
2.3.1 Object-Based Data Models

2.3.2 Record-Based Data Models

2.3.3 Physical Data Models

2.3.4 Conceptual Modeling

Functions of a DBMS

Chapter Summary
Review Questions
Exercises

Database Architectures and the Web

Multi-user DBMS Architectures

3.1.1 Teleprocessing

3.1.2 File-Server Architecture

3.1.3 Traditional Two-Tier Client-Server Architecture
3.1.4 Three-Tier Client—Server Architecture

3.1.5 N-Tier Architectures

3.1.6 Middleware

3.1.7 Transaction Processing Monitors

Web Services and Service-Oriented Architectures
3.2.1 Web Services
3.2.2 Service-Oriented Architectures (SOA)

Distributed DBMSs
Data Warehousing

Cloud Computing
3.5.1 Benefits and Risks of Cloud Computing
3.5.2 Cloud-based database solutions

Components of a DBMS

Oracle Architecture
3.7.1 Oracle’s Logical Database Structure
3.7.2 Oracle’s Physical Database Structure

Chapter Summary
Review Questions
Exercises

The Relational Model and Languages

The Relational Model
Brief History of the Relational Model

Terminology
4.2.1 Relational Data Structure

90
92

93
94
94
97
97

97

102
103
104

105

106
106
107
108
111
112
113
115

117
117
119

120
123

125
127
130

134

137
137
140

144
145
145

147

149
150

152
152

4.3

4.4

Chapter 5
5.1

5.2

5.3

Chapter 6
6.1

6.2

4.2.2 Mathematical Relations

4.2.3 Database Relations

4.2.4 Properties of Relations

4.2.5 Relational Keys

4.2.6 Representing Relational Database Schemas

Integrity Constraints
4.3.1 Nulls

4.3.2 Entity Integrity
4.3.3 Referential Integrity
4.3.4 General Constraints

Views

4.4.1 Terminology
4.4.2 Purpose of Views
4.4.3 Updating Views

Chapter Summary
Review Questions
Exercises

Relational Algebra and Relational Calculus

The Relational Algebra

5.1.1 Unary Operations

5.1.2 Set Operations

5.1.3 Join Operations

5.1.4 Division Operation

5.1.5 Aggregation and Grouping Operations

5.1.6 Summary of the Relational Algebra Operations

The Relational Calculus
5.2.1 Tuple Relational Calculus
5.2.2 Domain Relational Calculus

Other Languages

Chapter Summary
Review Questions
Exercises

SQL: Data Manipulation

Introduction to SQL
6.1.1 Objectives of SQL
6.1.2 History of SQL
6.1.3 Importance of SQL
6.1.4 Terminology

Writing SQL. Commands

Contents

155
156
156
158
159

161
161
162
162
163

163
163
164
165

165
166
166

167

168
168
171
174
177
178
180

181
181
184

186

187
187
188

191

192
192
193
195
195

195

13

14

Contents

6.3

Chapter 7
7.1

7.2

7.3

7.4

Data Manipulation

6.3.1 Simple Queries

6.3.2 Sorting Results (ORDER BY Clause)
6.3.3 Using the SQL Aggregate Functions
6.3.4 Grouping Results (GROUP BY Clause)
6.3.5 Subqueries

6.3.6 ANY and ALL

6.3.7 Multi-table Queries

6.3.8 EXISTS and NOT EXISTS

6.3.9 Combining Result Tables (UNION, INTERSECT,

EXCEPT)
6.3.10 Database Updates

Chapter Summary
Review Questions
Exercises

SQL: Data Definition

The ISO SQL Data Types
7.1.1 SQL Identifiers
7.1.2 SQL Scalar Data Types

Integrity Enhancement Feature
7.2.1 Required Data

7.2.2 Domain Constraints

7.2.3 Entity Integrity

7.2.4 Referential Integrity
7.2.5 General Constraints

Data Definition

7.3.1 Creating a Database

7.3.2 Creating a Table (CREATE TABLE)

7.3.3 Changing a Table Definition (ALTER TABLE)
7.3.4 Removing a Table (DROP TABLE)

7.3.5 Creating an Index (CREATE INDEX)

7.3.6 Removing an Index (DROP INDEX)

Views

7.4.1 Creating a View (CREATE VIEW)

7.4.2 Removing a View (DROP VIEW)

7.4.3 View Resolution

7.4.4 Restrictions on Views

7.4.5 View Updatability

7.4.6 WITH CHECK OPTION

7.4.7 Advantages and Disadvantages of Views
7.4.8 View Materialization

196
197
205
207
209
212
214
216
222

223
225

229
230
230

233

234
234
235

240
240
240
241
242
243

244
244
245
248
249
250
250

251
251
253
254
255
255
256
258
260

7.5

7.6

Chapter 8
8.1

8.2

8.3
8.4

Chapter 9
9.1
9.2
9.3

9.4
9.5

Transactions
7.5.1 Immediate and Deferred Integrity Constraints

Discretionary Access Control
7.6.1 Granting Privileges to Other Users (GRANT)
7.6.2 Revoking Privileges from Users (REVOKE)

Chapter Summary
Review Questions
Exercises

Advanced SQL

The SQL Programming Language
8.1.1 Declarations

8.1.2 Assignments

8.1.3 Control Statements

8.1.4 Exceptions in PL/SQL

8.1.5 Cursors in PL/SQL

Subprograms, Stored Procedures, Functions,
and Packages

Triggers
Recursion

Chapter Summary
Review Questions
Exercises

Object-Relational DBMSs
Advanced Database Applications
Weaknesses of RDBMSs

Storing Objects in a Relational Database
9.3.1 Mapping Classes to Relations
9.3.2 Accessing Objects in the Relational Database

Introduction to Object-Relational Database Systems

SQL:2011

9.5.1 Row Types

9.5.2 User-Defined Types

9.5.3 Subtypes and Supertypes

9.5.4 User-Defined Routines

9.5.5 Polymorphism

9.5.6 Reference Types and Object Identity
9.5.7 Creating Tables

9.5.8 Querying Data

Contents

261
262

262
264
265

267
268
268

271

272
272
273
274
276
277

280
281
287

288
289
289

291
292
297

302
303
304

305

308
309
310
313
314
317
318
318
321

15

16

Contents

9.6

Part 3

Chapter 10
10.1
10.2
10.3
10.4

10.5

10.6

10.7

10.8

10.9
10.10
10.11

9.5.9 Collection Types

9.5.10 Typed Views

9.5.11 Persistent Stored Modules
9.5.12 Triggers

9.5.13 Large Objects

9.5.14 Recursion

Object-Oriented Extensions in Oracle
9.6.1 User-Defined Data Types

9.6.2 Manipulating Object Tables
9.6.3 Object Views

9.6.4 Privileges

Chapter Summary
Review Questions
Exercises

Database Analysis and Design

Database System Development Lifecycle

The Information Systems Lifecycle

The Database System Development Lifecycle

Database Planning

System Definition
10.4.1 User Views

Requirements Collection and Analysis
10.5.1 Centralized Approach
10.5.2 View Integration Approach

Database Design

10.6.1 Approaches to Database Design
10.6.2 Data Modeling

10.6.3 Phases of Database Design

DBMS Selection
10.7.1 Selecting the DBMS

Application Design
10.8.1 Transaction Design
10.8.2 User Interface Design Guidelines

Prototyping
Implementation

Data Conversion and Loading

323
326
327
327
330
331

331
332
337
338
339

340
340
341

343

345
346
347
347

350
350

350
352
352

354
355
355
356

359
359

363
364
365

367
367
368

10.12
10.13
10.14

Chapter 11
11.1
11.2
11.3

Chapter 12
12.1
12.2

12.3

12.4
12.5

Testing
Operational Maintenance
CASE Tools

Chapter Summary
Review Questions
Exercises

Database Analysis and the DreamHome Case Study
When Are Fact-Finding Techniques Used?
What Facts Are Collected?

Fact-Finding Techniques

11.3.1 Examining Documentation

11.3.2 Interviewing

11.3.3 Observing the Enterprise in Operation
11.8.4 Research

11.3.5 Questionnaires

Using Fact-Finding Techniques: A Worked -Example
11.4.1 The DreamHome Case Study—An Overview of the
Current System

11.4.2 The DreamHome Case Study—Database Planning
11.4.3 The DreamHome Case Study—System Definition
11.4.4 The DreamHome Case Study—Requirements
Collection and Analysis

11.4.5 The DreamHome Case Study—Database Design

Chapter Summary

Review Questions
Exercises

Entity—Relationship Modeling
Entity Types

Relationship Types
12.2.1 Degree of Relationship Type
12.2.2 Recursive Relationship

Attributes

12.3.1 Simple and Composite Attributes

12.3.2 Single-valued and Multi-valued Attributes
12.3.3 Derived Attributes

12.3.4 Keys

Strong and Weak Entity Types

Attributes on Relationships

Contents

368
369
370

372
373
374

375
376
377

378
378
378
379
380
380

381

382
386
392

393
401
402
402
402

405
406

408
410
412

413
413
414
414
415

417
418

17

18

Contents

12.6

12.7

Chapter 13
13.1

13.2
13.3

Chapter 14
14.1
14.2
14.3

14.4

14.5

Structural Constraints

12.6.1 One-to-One (1:1) Relationships

12.6.2 One-to-Many (1:¥) Relationships

12.6.3 Many-to-Many (*:*) Relationships

12.6.4 Multiplicity for Complex Relationships
12.6.5 Cardinality and Participation Constraints

Problems with ER Models
12.7.1 Fan Traps
12.7.2 Chasm Traps

Chapter Summary
Review Questions
Exercises

Enhanced Entity—Relationship Modeling

Specialization/Generalization

13.1.1 Superclasses and Subclasses

13.1.2 Superclass/Subclass Relationships

13.1.3 Attribute Inheritance

13.1.4 Specialization Process

13.1.5 Generalization Process

13.1.6 Constraints on Specialization/Generalization
13.1.7 Worked Example of using Specialization/
Generalization to Model the Branch View of the
DreamHome Case Study

Aggregation
Composition
Chapter Summary

Review Questions
Exercises

Normalization
The Purpose of Normalization
How Normalization Supports Database Design

Data Redundancy and Update Anomalies
14.3.1 Insertion Anomalies

14.3.2 Deletion Anomalies

14.3.3 Modification Anomalies

Functional Dependencies

14.4.1 Characteristics of Functional Dependencies
14.4.2 Identifying Functional Dependencies
14.4.3 Identifying the Primary Key for a Relation
Using Functional Dependencies

The Process of Normalization

419
420
421
422
423
424

426
426
428
430
430
431

433

434
434
435
436
436
437
440

441
445
446

447
448
448

451
452
453

454
455
455
456

456
456
460

463
464

14.6
14.7
14.8
14.9

Chapter 15
15.1
15.2

15.3
15.4

Part 4

Chapter 16
16.1

16.2
16.3

First Normal Form (1NF)

Second Normal Form (2NF)

Third Normal Form (3NF)

General Definitions of 2NF and 3NF

Chapter Summary
Review Questions
Exercises

Advanced Normalization

More on Functional Dependencies
15.1.1 Inference Rules for Functional Dependencies
15.1.2 Minimal Sets of Functional Dependencies

Boyce-Codd Normal Form (BCNF)
15.2.1 Definition of BCNF

Review of Normalization Up to BCNF440

Fourth Normal Form (4NF)
15.4.1 Multi-Valued Dependency
15.4.2 Definition of Fourth Normal Form

Fifth Normal Form (5NF)
15.5.1 Lossless-]Join Dependency
15.5.2 Definition of Fifth Normal Form

Chapter Summary
Review Questions
Exercises

Methodology

Methodology—Conceptual Database Design

Introduction to the Database Design Methodology
16.1.1 What Is a Design Methodology?

16.1.2 Conceptual, Logical, and Physical Database Design

16.1.3 Critical Success Factors in Database Design
Overview of the Database Design Methodology

Conceptual Database Design Methodology
Step 1: Build Conceptual Data Model

Chapter Summary
Review Questions
Exercises

Contents

466
470
471
473
475

475
476

481

482
482
484

485
485

493
494
495

495
496
496
498
498
499

501

503

504
504
505
505

506

508
508

524
524
525

19

20

Contents

Chapter 17

17.1

Chapter 18

18.1
18.2
18.3

Chapter 19

19.1

19.2

Part 5

Chapter 20
20.1

Methodology—Logical Database Design
for the Relational Model

Logical Database Design Methodology for

the Relational Model
Step 2: Build Logical Data Model

Chapter Summary
Review Questions
Exercises

Methodology—Physical Database Design
for Relational Databases

Comparison of Logical and Physical Database Design
Overview of the Physical Database Design Methodology

The Physical Database Design Methodology for

Relational Databases

Step 3: Translate Logical Data Model for Target DBMS
Step 4: Design File Organizations and Indexes

Step 5: Design User Views

Step 6: Design Security Mechanisms

Chapter Summary
Review Questions
Exercises

Methodology—Monitoring and Tuning
the Operational System

Denormalizing and Introducing Controlled Redundancy
Step 7: Consider the Introduction of Controlled
Redundancy

Monitoring the System to Improve Performance
Step 8: Monitor and Tune the Operational System

Chapter Summary
Review Questions
Exercises

Selected Database Issues

Security and Administration

Database Security
20.1.1 Threats

527

528
528

556
557
557

561
562
563

564
564
569
582
582

583
584
584

585
585

585

598
598

602
603
603

605

607

608
609

20.2

20.3
20.4
20.5

20.6

Chapter 21

21.1

21.2

Countermeasures—Computer-Based Controls

20.2.1 Authorization

20.2.2 Access Controls

20.2.3 Views

20.2.4 Backup and Recovery

20.2.5 Integrity

20.2.6 Encryption

20.2.7 RAID (Redundant Array of Independent Disks)

Security in Microsoft Office Access DBMS
Security in Oracle DBMS

DBMSs and Web Security

20.5.1 Proxy Servers

20.5.2 Firewalls

20.5.3 Message Digest Algorithms and Digital Signatures
20.5.4 Digital Certificates

20.5.5 Kerberos

20.5.6 Secure Sockets Layer and Secure HT'TP
20.5.7 Secure Electronic Transactions and Secure
Transaction Technology

20.5.8 Java Security

20.5.9 ActiveX Security

Data Administration and Database Administration

20.6.1 Data Administration

20.6.2 Database Administration

20.6.3 Comparison of Data and Database Administration

Chapter Summary
Review Questions
Exercises

Professional, Legal, and Ethical Issues
in Data Management

Defining Legal and Ethical Issues in I'T

21.1.1 Defining Ethics in the Context of I'T

21.1.2 The Difference Between Ethical and Legal Behavior
21.1.3 Ethical Behavior in I'T

Legislation and Its Impact on the I'T Function

21.2.1 Securities and Exchange Commission (SEC)
Regulation National Market System (NMS)

21.2.2 The Sarbanes-Oxley Act, COBIT, and COSO
21.2.3 The Health Insurance Portability and
Accountability Act

21.2.4 The European Union (EU) Directive on Data
Protection of 1995

21.2.5 The United Kingdom’s Data Protection Act of 1998

Contents

611
612
613
616
616
617
617
618

621
623

627
628
628
629
629
630
630

631
632
634

634
635
636
636

637
638
638

641

642
642
643
644

645

645
646

649

650
651

21

22

Contents

21.3

214

Chapter 22
22.1

22.2

22.3

22.4

21.2.6 Access to Information Laws

21.2.7 International Banking—Basel II Accords

Establishing a Culture of Legal and Ethical
Data Stewardship

21.3.1 Developing an Organization-Wide Policy for Legal

and Ethical Behavior

21.3.2 Professional Organizations and Codes of Ethics
21.3.3 Developing an Organization-Wide Policy for Legal

and Ethical Behavior for DreamHome

Intellectual Property
21.4.1 Patent

21.4.2 Copyright
21.4.3 Trademark

21.4.4 Intellectual Property Rights Issues for Software
21.4.5 Intellectual Property Rights Issues for Data

Chapter Summary
Review Questions
Exercises

Transaction Management

Transaction Support
22.1.1 Properties of Transactions
22.1.2 Database Architecture

Concurrency Control

22.2.1 The Need for Concurrency Control
22.2.2 Serializability and Recoverability
22.2.3 Locking Methods

22.2.4 Deadlock

22.2.5 Timestamping Methods

22.2.6 Multiversion Timestamp Ordering
22.2.7 Optimistic Techniques

22.2.8 Granularity of Data Items

Database Recovery

22.3.1 The Need for Recovery

22.3.2 Transactions and Recovery
22.3.3 Recovery Facilities

22.3.4 Recovery Techniques

22.3.5 Recovery in a Distributed DBMS

Advanced Transaction Models
22.4.1 Nested Transaction Model
22.4.2 Sagas

22.4.3 Multilevel Transaction Model
22.4.4 Dynamic Restructuring
22.4.5 Workflow Models

652
654

655

655
656

659

660
661
661
662
662
664

664
665
666

667

668
671
671

672
672
675
683
689
692
695
696
697

700
700
701
704
707
709

709
711
712
713
714
715

22.5

Chapter 23
23.1
23.2
23.3

23.4

23.5

23.6

23.7

Concurrency Control and Recovery in Oracle
22.5.1 Oracle’s Isolation Levels

22.5.2 Multiversion Read Consistency

22.5.3 Deadlock Detection

22.5.4 Backup and Recovery

Chapter Summary
Review Questions
Exercises

Query Processing
Overview of Query Processing
Query Decomposition

Heuristical Approach to Query Optimization
23.3.1 Transformation Rules for the Relational
Algebra Operations

23.3.2 Heuristical Processing Strategies

Cost Estimation for the Relational Algebra Operations
23.4.1 Database Statistics

23.4.2 Selection Operation (S = 0,(R))

23.4.3 Join Operation (T = (R >4 S))

23.4.4 Projection Operation (8 = Il , o, - - -5 4, (R))
23.4.5 The Relational Algebra Set Operations
(T=RUS,T=RNS, T=R-9)

Enumeration of Alternative Execution Strategies
23.5.1 Pipelining

23.5.2 Linear Trees

23.5.3 Physical Operators and Execution Strategies
23.5.4 Reducing the Search Space

23.5.5 Enumerating Left-Deep Trees

23.5.6 Semantic Query Optimization

23.5.7 Alternative Approaches to Query Optimization
23.5.8 Distributed Query Optimization

Query Processing and Optimization
23.6.1 New Index Types

Query Optimization in Oracle

23.7.1 Rule-Based and Cost-Based Optimization
23.7.2 Histograms

23.7.3 Viewing the Execution Plan

Chapter Summary
Review Questions
Exercises

Contents

716
717
717
719
719

722
723
724

727
729
732
736

736
741

742
742
743
750
757

759

760
761
761
762
764
765
766
767
768

768
771

772
772
776
778

779
780
781

23

24

Contents

Part 6

Chapter 24
24.1

24.2
24.3

244

24.5

24.6

Chapter 25
25.1
25.2

25.3
25.4

25.5
25.6

Distributed DBMSs and Replication

Distributed DBMSs—Concepts and Design

Introduction

24.1.1 Concepts

24.1.2 Advantages and Disadvantages of DDBMSs
24.1.3 Homogeneous and Heterogeneous DDBMSs

Overview of Networking

Functions and Architectures of a DDBMS

24.3.1 Functions of a DDBMS

24.3.2 Reference Architecture for a DDBMS

24.3.3 Reference Architecture for a Federated MDBS
24.3.4 Component Architecture for a DDBMS

Distributed Relational Database Design
24.4.1 Data Allocation
24.4.2 Fragmentation

Transparencies in a DDBMS

24.5.1 Distribution Transparency

24.5.2 Transaction Transparency

24.5.3 Performance Transparency

24.5.4 DBMS Transparency

24.5.5 Summary of Transparencies in a DDBMS

Date’s Twelve Rules for a DDBMS

Chapter Summary
Review Questions
Exercises

Distributed DBMSs—Advanced Concepts

Distributed Transaction Management

Distributed Concurrency Control
25.2.1 Objectives

25.2.2 Distributed Serializability
25.2.3 Locking Protocols

Distributed Deadlock Management

Distributed Database Recovery

25.4.1 Failures in a Distributed Environment
25.4.2 How Failures Affect Recovery

25.4.3 Two-Phase Commit (2PC)

25.4.4 Three-Phase Commit (3PC)

25.4.5 Network Partitioning

The X/Open Distributed Transaction Processing Model
Distributed Query Optimization

783

785

786
787
791
794

797

801
801
801
803
804

805
806
807

816
816
819
822
824
824

825

827
828
828

831

832

833
833
834
834

837

840
841
842
842
849
852

854
856

25.7

Chapter 26
26.1

26.2

26.3

26.4

26.5

Part 7

Chapter 27
27.1

25.6.1 Data Localization
25.6.2 Distributed Joins
25.6.3 Global Optimization

Distribution in Oracle
25.7.1 Oracle’s DDBMS Functionality

Chapter Summary
Review Questions
Exercises

Replication and Mobile Databases

Introduction to Data Replication

26.1.1 Applications of Replication

26.1.2 Replication Model

26.1.3 Functional Model of Replication Protocols
26.1.4 Consistency

Replication Architecture

26.2.1 Kernel-Based Replication

26.2.2 Middleware-Based Replication
26.2.3 Processing of Updates

26.2.4 Propagation of Updates

26.2.5 Update Location (Data Ownership)
26.2.6 Termination Protocols

Replication Schemes

26.3.1 Eager Primary Copy

26.3.2 Lazy Primary Copy

26.3.3 Eager Update Anywhere

26.3.4 Lazy Update Anywhere

26.3.5 Update Anywhere with Uniform

Total Order Broadcast

26.3.6 SI and Uniform Total Order Broadcast Replication

Introduction to Mobile Databases
26.4.1 Mobile DBMSs
26.4.2 Issues with Mobile DBMSs

Oracle Replication
26.5.1 Oracle’s Replication Functionality

Chapter Summary
Review Questions
Exercises

Object DBMSs

Object-Oriented DBMSs—Concepts and Design

Next-Generation Database Systems

Contents

858
861
862

866
866

872
872
873

875

876
877
878
879
880

880
880
881
882
884
884
888

888
889
894
898
899

903
907

913
915
916

929
929

936
937
937

939

941
943

25

26

Contents

27.2

27.3

27.4

27.5

27.6
27.7

27.8

Chapter 28
28.1

28.2

Introduction to OODBMSs

27.2.1 Definition of Object-Oriented DBMSs

27.2.2 Functional Data Models

27.2.3 Persistent Programming Languages

27.2.4 Alternative Strategies for Developing an OODBMS

Persistence in OODBMSs

27.3.1 Pointer Swizzling Techniques
27.3.2 Accessing an Object

27.3.3 Persistence Schemes

27.3.4 Orthogonal Persistence

Issues in OODBMSs
27.4.1 Transactions
27.4.2 Versions

27.4.3 Schema Evolution
27.4.4 Architecture
27.4.5 Benchmarking

Advantages and Disadvantages of OODBMSs
27.5.1 Advantages
27.5.2 Disadvantages

Comparison of ORDBMS and OODBMS

Object-Oriented Database Design

27.7.1 Comparison of Object-Oriented Data Modeling
and Conceptual Data Modeling

27.7.2 Relationships and Referential Integrity

27.7.3 Behavioral Design

Object-Oriented Analysis and Design with UML
27.8.1 UML Diagrams

27.8.2 Usage of UML in the Methodology

for Database Design

Chapter Summary
Review Questions
Exercises

Object-Oriented DBMSs—Standards and Systems

Object Management Group

28.1.1 Background

28.1.2 The Common Object Request Broker Architecture
28.1.3 Other OMG Specifications

28.1.4 Model-Driven Architecture

Object Data Standard ODMG 3.0, 1999
28.2.1 Object Data Management Group
28.2.2 The Object Model

945
945
946
951
953

954
956
959
961
962

964
964
965
966
969
971

974
974
976

978
979

979
980
982

984
985

990

992
993
993

995

996
996
999
1004
1007

1007
1009
1010

28.3

Part 8

Chapter 29
29.1

29.2

29.3

294

29.5
29.6

29.7

28.2.3 The Object Definition Language

28.2.4 The Object Query Language

28.2.5 Other Parts of the ODMG Standard

28.2.6 Mapping the Conceptual Design to a Logical
(Object-Oriented) Design

ObjectStore

28.3.1 Architecture

28.3.2 Building an ObjectStore Application
28.3.3 Data Definition in ObjectStore
28.3.4 Data Manipulation in ObjectStore

Chapter Summary
Review Questions
Exercises

The Web and DBMSs

Web Technology and DBMSs

Introduction to the Internet and the Web
29.1.1 Intranets and Extranets
29.1.2 e-Commerce and e-Business

The Web

29.2.1 HyperText Transfer Protocol

29.2.2 HyperText Markup Language

29.2.3 Uniform Resource Locators

29.2.4 Static and Dynamic Web Pages

29.2.5 Web Services

29.2.6 Requirements for Web—-DBMS Integration
29.2.7 Advantages and Disadvantages of the
Web-DBMS Approach

29.2.8 Approaches to Integrating the Web and DBMSs

Scripting Languages

29.3.1 JavaScript and JScript
29.8.2 VBScript

29.3.3 Perl and PHP

Common Gateway Interface (CGI)
29.4.1 Passing Information to a CGI Script
29.4.2 Advantages and Disadvantages of CGI

HTTP Cookies

Extending the Web Server
29.6.1 Comparison of CGI and API

Java
29.7.1 JDBC
29.7.2 SQL]

Contents

1018
1021
1027

1030

1031
1031
1034
1035
1039

1042
1043
1043

1045

1047

1048
1050
1051

1052
1053
1055
1057
1058
1058
1059

1060
1064

1065
1065
1066
1067

1067
1069
1071

1072

1073
1074

1074
1078
1084

27

28

Contents

29.8

29.9

Chapter 30
30.1

30.2

30.3

29.7.3 Comparison of JDBC and SQL]J

29.7.4 Container-Managed Persistence (CMP)
29.7.5 Java Data Objects (JDO)

29.7.6 JPA (Java Persistence API)

29.7.7 Java Servlets

29.7.8 JavaServer Pages

29.7.9 Java Web Services

Microsoft’s Web Platform

29.8.1 Universal Data Access

29.8.2 Active Server Pages and ActiveX Data Objects
29.8.3 Remote Data Services

29.8.4 Comparison of ASP and JSP

29.8.5 Microsoft .NET

29.8.6 Microsoft Web Services

Oracle Internet Platform

29.9.1 Oracle WebLogic Server

29.9.2 Oracle Metadata Repository

29.9.3 Oracle Identity Management

29.9.4 Oracle Portal

29.9.5 Oracle WebCenter

29.9.6 Oracle Business Intelligence (BI) Discoverer
29.9.7 Oracle SOA (Service-Oriented Architecture) Suite

Chapter Summary
Review Questions
Exercises

Semistructured Data and XML

Semistructured Data
30.1.1 Object Exchange Model (OEM)
30.1.2 Lore and Lorel

Introduction to XML
30.2.1 Overview of XML
30.2.2 Document Type Definitions (DTDs)

XML-Related Technologies

30.3.1 DOM and SAX Interfaces

30.3.2 Namespaces

30.3.3 XSL and XSLT

30.3.4 XPath (XML Path Language)

30.3.5 XPointer (XML Pointer Language)

30.3.6 XLink (XML Linking Language)

30.3.7 XHTML

30.3.8 Simple Object Access Protocol (SOAP)
30.3.9 Web Services Description Language (WSDL)

1084
1085
1089
1096
1104
1104
1105

1107
1108
1109
1110
1113
1113
1118

1119
1120
1121
1121
1122
1122
1122
1123

1126
1127
1127

1129

1130
1132
1133

1137
1140
1142

1145
1146
1147
1147
1148
1149
1150
1150
1151
1152

30.4

30.5

30.6

30.7

Part 9

Chapter 31
31.1

31.2

30.8.10 Universal Discovery, Description, and
Integration (UDDI)
30.3.11 JSON (JavaScript Object Notation)

XML Schema
30.4.1 Resource Description Framework (RDF)

XML Query Languages

30.5.1 Extending Lore and Lorel to Handle XML
30.5.2 XML Query Working Group

30.5.3 XQuery—A Query Language for XML

30.5.4 XML Information Set

30.5.5 XQuery 1.0 and XPath 2.0 Data Model (XDM)
30.5.6 XQuery Update Facility 1.0

30.5.7 Formal Semantics

XML and Databases

30.6.1 Storing XML in Databases
30.6.2 XML and SQL

30.6.3 Native XML Databases

XML in Oracle

Chapter Summary
Review Questions
Exercises

Business Intelligence

Data Warehousing Concepts

Introduction to Data Warehousing

31.1.1 The Evolution of Data Warehousing
31.1.2 Data Warehousing Concepts

31.1.3 Benefits of Data Warehousing
31.1.4 Comparison of OLTP Systems

and Data Warehousing

31.1.5 Problems of Data Warehousing
31.1.6 Real-Time Data Warehouse

Data Warehouse Architecture
31.2.1 Operational Data
31.2.2 Operational Data Store
31.2.3 ETL Manager

31.2.4 Warehouse Manager
31.2.5 Query Manager

31.2.6 Detailed Data

31.2.7 Lightly and Highly Summarized Data
31.2.8 Archive/Backup Data
31.2.9 Metadata

31.2.10 End-User Access Tools

Contents

1152
1154

1156
1162

1166
1167
1168
1169
1179
1180
1186
1188

1196
1196
1199
1213

1214

1217
1219
1220

1221

1223

1224
1224
1225
1226

1226
1228
1230

1231
1231
1231
1232
1232
1233
1233
1233
1233
1234
1234

29

30

Contents

31.3

31.4
31.5

31.6

Chapter 32
32.1
32.2
32.3
32.4

325

32.6
32.7

Chapter 33
33.1

Data Warehousing Tools and Technologies

31.3.1 Extraction, Transformation, and Loading (ETL)
31.3.2 Data Warehouse DBMS

31.3.3 Data Warehouse Metadata

31.3.4 Administration and Management Tools

Data Mart
31.4.1 Reasons for Creating a Data Mart

Data Warehousing and Temporal Databases
31.5.1 Temporal Extensions to the SQL Standard

Data Warehousing Using Oracle

31.6.1 Warehouse Features in Oracle 11g
31.6.2 Oracle Support for Temporal Data
Chapter Summary

Review Questions

Exercises

Data Warehousing Design

Designing a Data Warehouse Database

Data Warehouse Development Methodologies
Kimball’s Business Dimensional Lifecycle

Dimensionality Modeling
32.4.1 Comparison of DM and ER models
The Dimensional Modeling Stage of Kimball’s

Business Dimensional Lifecycle

32.5.1 Create a High-Level Dimensional Model
(Phase I)

32.5.2 Identify All Dimension Attributes for the
Dimensional Model (Phase IT)

Data Warehouse Development Issues

Data Warehousing Design Using Oracle

32.7.1 Oracle Warehouse Builder Components
32.7.2 Using Oracle Warehouse Builder

32.7.3 Warehouse Builder Features in Oracle 11g
Chapter Summanry

Review Questions

Exercises

OLAP

Online Analytical Processing
33.1.1 OLAP Benchmarks

1235
1236
1237
1240
1242

1242
1243

1243
1246

1248
1251
1252

1253
1254
1255

1257
1258
1258
1260

1261
1264

1265

1265

1270
1273

1274
1274
1275
1279
1280
1281
1282

1285

1286
1287

33.2
33.3

33.4

33.5

33.6

Chapter 34
34.1

34.2

34.3

34.4
34.5
34.6

OLAP Applications

Multidimensional Data Model

33.3.1 Alternative Multidimensional Data
Representations

33.3.2 Dimensional Hierarchy

33.3.3 Multidimensional Operations
33.3.4 Multidimensional Schemas

OLAP Tools

33.4.1 Codd’s Rules for OLAP Tools

33.4.2 OLAP Server—Implementation Issues
33.4.3 Categories of OLAP Servers

OLAP Extensions to the SQL Standard
33.5.1 Extended Grouping Capabilities
33.5.2 Elementary OLAP Operators

Oracle OLAP

33.6.1 Oracle OLAP Environment
33.6.2 Platform for Business Intelligence
Applications

33.6.3 Oracle Database

33.6.4 Oracle OLAP

33.6.5 Performance

33.6.6 System Management

33.6.7 System Requirements

33.6.8 OLAP Features in Oracle 11g

Chapter Summary
Review Questions
Exercises

Data Mining
Data Mining

Data Mining Techniques
34.2.1 Predictive Modeling
34.2.2 Database Segmentation
34.2.3 Link Analysis

34.2.4 Deviation Detection

The Data Mining Process
34.3.1 The CRISP-DM Model

Data Mining Tools
Data Mining and Data Warehousing

Oracle Data Mining (ODM)
34.6.1 Data Mining Capabilities

Contents

1287
1289

1289
1291
1293
1293

1293
1294
1295
1296

1300
1300
1305

1307
1307

1308
1308
1310
1311
1312
1312
1312

1313
1313
1313

1315
1316

1316
1318
1319
1320
1321

1322
1322

1323
1324

1325
1325

31

32

Contents

34.6.2 Enabling Data Mining Applications
34.6.3 Predictions and Insights

34.6.4 Oracle Data Mining Environment
34.6.5 Data Mining Features in Oracle 11g

Chapter Summanry
Review Questions
Exercises

Appendices

Users’ Requirements Specification
for DreamHome Case Study

A.1 Branch User Views of DreamHome
A.1.1 Data Requirements
A.1.2 Transaction Requirements (Sample)

A.2 Staff User Views of DreamHome
A.2.1 Data Requirements
A.2.2 Transaction Requirements (Sample)

Other Case Studies

B.1 The University Accommodation Office Case Study
B.1.1 Data Requirements
B.1.2 Query Transactions (Sample)

B.2 'The EasyDrive School of Motoring Case Study
B.2.1 Data Requirements
B.2.2 Query Transactions (Sample)

B.3 The Wellmeadows Hospital Case Study
B.3.1 Data Requirements
B.3.2 Transaction Requirements (Sample)

Alternative ER Modeling Notations
C.1 ER Modeling Using the Chen Notation
C.2 ER Modeling Using the Crow’s Feet Notation

Summary of the Database Design Methodology
for Relational Databases

Step 1: Build Conceptual Data Model

Step 2: Build Logical Data Model

Step 3: Translate Logical Data Model for Target DBMS
Step 4: Design File Organizations and Indexes

1325
1326
1326
1327

1327
1328
1328

1329

A-1

A-1
A-1
A-3
A4

A4
A-5

B-5
B-5
B-12

C-1
C-1
C-1

D-1

D-1
D-2
D-5
D-5

Contents 33

Step 5: Design User Views D-5
Step 6: Design Security Mechanisms D-5
Step 7: Consider the Introduction of Controlled
Redundancy D-6
Step 8: Monitor and Tune the Operational System D-6
E Introduction to Pyrrho: A Lightweight RDBMS E-I
E.1 Pyrrho Features E-2
E.2 Download and Install Pyrrho E-2
E.3 Getting Started E-3
E.4 The Connection String E-3
E.5 Pyrrho’s Security Model E-4
E.6 Pyrrho SQL Syntax E-4
F File Organizations and Indexes (Online) F-1
G When Is a DBMS Relational? (Online) G-1

Commercial DBMSs: Access and Oracle
(Online) H-1

I Programmatic SQL (Online) I-1

J Estimating Disk Space Requirements

(Online) J-1
K Introduction to Object-Oriented Concepts
(Online) K-1
L Example Web Scripts (Online) L-1
M Query-By-Example (QBE) (Online) M-1
N Third Generation Manifestos (Online) N-1
O Postgres—An Early ORDBMS (Online) (o B
References R-1
Further Reading FR-1

Index IN-1

Preface

Background

The history of database research over the past 30 years is one of exceptional
productivity that has led to the database system becoming arguably the most
important development in the field of software engineering. The database is now
the underlying framework of the information system and has fundamentally
changed the way many organizations operate. In particular, the developments
in this technology over the last few years have produced systems that are more
powerful and more intuitive to use. This development has resulted in increas-
ing availability of database systems for a wider variety of users. Unfortunately,
the apparent simplicity of these systems has led to users creating databases and
applications without the necessary knowledge to produce an effective and effi-
cient system. And so the “software crisis” or, as it is sometimes referred to, the
“software depression” continues.

The original stimulus for this book came from the authors’ work in industry,
providing consultancy on database design for new software systems or, as often as
not, resolving inadequacies with existing systems. In addition, the authors’ move to
academia brought similar problems from different users—students. The objectives
of this book, therefore, are to provide a textbook that introduces the theory behind
databases as clearly as possible and, in particular, to provide a methodology for
database design that can be used by both technical and nontechnical readers.

The methodology presented in this book for relational Database Management
Systems (DBMSs)—the predominant system for business applications at present—
has been tried and tested over the years in both industrial and academic
environments. It consists of three main phases: conceptual, logical, and physical
database design. The first phase starts with the production of a conceptual data
model that is independent of all physical considerations. This model is then refined
in the second phase into a logical data model by removing constructs that cannot
be represented in relational systems. In the third phase, the logical data model is
translated into a physical design for the target DBMS. The physical design phase
considers the storage structures and access methods required for efficient and
secure access to the database on secondary storage.

35

36

Preface

2

v

The methodology in each phase is presented as a series of steps. For the
inexperienced designer, it is expected that the steps will be followed in the order
described, and guidelines are provided throughout to help with this process. For
the experienced designer, the methodology can be less prescriptive, acting more as
a framework or checklist. To help the reader use the methodology and understand
the important issues, the methodology has been described using a realistic worked
example, based on an integrated case study, DreamHome. In addition, three
additional case studies are provided in Appendix B to allow readers to try out the
methodology for themselves.

UML (Unified Modeling Language)

Increasingly, companies are standardizing the way in which they model data
by selecting a particular approach to data modeling and using it throughout
their database development projects. A popular high-level data model used in
conceptual/logical database design, and the one we use in this book, is based
on the concepts of the Entity—Relationship (ER) model. Currently there is no
standard notation for an ER model. Most books that cover database design for
relational DBMSs tend to use one of two conventional notations:

« Chen’s notation, consisting of rectangles representing entities and diamonds
representing relationships, with lines linking the rectangles and diamonds; or

- Crow’s Feet notation, again consisting of rectangles representing entities and
lines between entities representing relationships, with a crow’s foot at one end of
a line representing a one-to-many relationship.

Both notations are well supported by current Computer-Aided Software
Engineering (CASE) tools. However, they can be quite cumbersome to use and a
bit difficult to explain. In previous editions, we used Chen’s notation. However,
following an extensive questionnaire carried out by Pearson Education, there
was a general consensus that the notation should be changed to the latest object-
oriented modeling language, called UML (Unified Modeling Language). UML
is a notation that combines elements from the three major strands of object-
oriented design: Rumbaugh’s OMT modeling, Booch’s Object-Oriented Analysis
and Design, and Jacobson’s Objectory.

There are three primary reasons for adopting a different notation: (1) UML
is becoming an industry standard; for example, the Object Management Group
(OMG) has adopted UML as the standard notation for object methods; (2) UML
is arguably clearer and easier to use; and (83) UML is now being adopted within
academia for teaching object-oriented analysis and design, and using UML in
database modules provides more synergy. Therefore, in this edition we have ad-
opted the class diagram notation from UML. We believe that you will find this
notation easier to understand and use.

Preface 37

What’s New in the Sixth Edition

+ Extended chapter on database architectures and the Web, covering cloud computing.
» Updated chapter on professional, legal, and ethical issues in I'T and databases.

* New section on data warehousing and temporal databases.

* New review questions and exercises at the end of chapters.

» Updated treatment to cover the latest version of the SQL standard, which was
released in late 2011 (SQL:2011).

* Revised chapter on replication and mobile databases.
» Updated chapters on Web-DBMS integration and XML.
+ Coverage updated to Oracle 11g.

Intended Audience

This book is intended as a textbook for a one- or two-semester course in database
management or database design in an introductory undergraduate, graduate, or
advanced undergraduate course. Such courses are usually required in an infor-
mation systems, business I'T, or computer science curriculum.

The book is also intended as a reference book for I'T professionals, such as sys-
tems analysts or designers, application programmers, systems programmers, da-
tabase practitioners, and for independent self-teachers. Owing to the widespread
use of database systems nowadays, these professionals could come from any type
of company that requires a database.

It would be helpful for students to have a good background in the file
organization and data structures concepts covered in Appendix F before
covering the material in Chapter 18 on physical database design and Chapter 23
on query processing. This background ideally will have been obtained from
a prior course. If this is not possible, then the material in Appendix F can be
presented near the beginning of the database course, immediately following
Chapter 1.

An understanding of a high-level programming language, such as C, would be
advantageous for Appendix I on embedded and dynamic SQL and Section 28.3
on ObjectStore.

Distinguishing Features

(1) An easy-to-use, step-by-step methodology for conceptual and logical database
design, based on the widely accepted Entity—Relationship model, with nor-
malization used as a validation technique. There is an integrated case study
showing how to use the methodology.

(2) An easy-to-use, step-by-step methodology for physical database design, covering
the mapping of the logical design to a physical implementation, the selection

38

Preface

3)

4)

®)

(6)

()
@®)

(10)

(1)

(12)

(13)

(14)

of file organizations and indexes appropriate for the applications, and when to
introduce controlled redundancy. Again, there is an integrated case study show-
ing how to use the methodology.

Separate chapters showing how database design fits into the overall database
systems development lifecycle, how fact-finding techniques can be used to
identity the system requirements, and how UML fits into the methodology.

A clear and easy-to-understand presentation, with definitions clearly
highlighted, chapter objectives clearly stated, and chapters summarized.
Numerous examples and diagrams are provided throughout each chapter to
illustrate the concepts. There is a realistic case study integrated throughout
the book and additional case studies that can be used as student projects.

Extensive treatment of the latest formal and de facto standards: Structured
Query Language (SQL), Query-By-Example (QBE), and the Object Data
Management Group (ODMG) standard for object-oriented databases.

Three tutorial-style chapters on the SQL standard, covering both interactive

and embedded SQL.
A chapter on legal, professional and ethical issues related to I'T and databases.

Comprehensive coverage of the concepts and issues relating to distributed
DBMSs and replication servers.

Comprehensive introduction to the concepts and issues relating to object-based
DBMSs including a review of the ODMG standard and a tutorial on the object
management facilities within the latest release of the SQL standard, SQL:2011.

Extensive treatment of the Web as a platform for database applications with
many code samples of accessing databases on the Web. In particular, we cover
persistence through Container-Managed Persistence (CMP), Java Data Ob-
jects (JDO), Java Persistence API (JPA), JDBC, SQL]J, ActiveX Data Objects
(ADO), ADO.NET, and Oracle PL/SQL Pages (PSP).

An introduction to semistructured data and its relationship to XML and ex-
tensive coverage of XML and its related technologies. In particular, we cover
XML Schema, XQuery, and the XQuery Data Model and Formal Semantics.
We also cover the integration of XML into databases and examine the exten-
sions added to SQL.:2008 and SQIL.:2011 to enable the publication of XML.
Comprehensive introduction to data warehousing, Online Analytical Process-
ing (OLAP), and data mining.

Comprehensive introduction to dimensionality modeling for designing a data
warehouse database. An integrated case study is used to demonstrate a meth-
odology for data warehouse database design.

Coverage of DBMS system implementation concepts, including concurrency
and recovery control, security, and query processing and query optimization.

Pedagogy

Before starting to write any material for this book, one of the objectives was to

produce a textbook that would be easy for the readers to follow and understand,

Preface

whatever their background and experience. From the authors” experience of using
textbooks, which was quite considerable before undertaking a project of this size,
and also from listening to colleagues, clients, and students, we knew there were a
number of design features that readers liked and disliked. With these comments in
mind, the following style and structure features were adopted:

» A set of objectives is clearly identified at the start of each chapter.

+ Each important concept that is introduced is clearly defined and highlighted by set-
ting the definition apart from the text.

* Diagrams are liberally used throughout to support and clarify concepts.

* A very practical orientation: each chapter contains many worked examples to
illustrate the concepts covered.

* A summary at the end of each chapter covers the main concepts introduced.

+ A set of review questions falls at the end of each chapter, the answers to which can
be found in the text.

+ A set of exercises at the end of each chapter, can be used by teachers or by indi-
viduals to demonstrate and test the individual’s understanding of the chapter, the
answers to which can be found in the accompanying Instructor’s Solutions Manual.

Support Materials
A comprehensive set of supplements are available for this textbook:

—Lecture slides in PowerPoint® format

—Instructor’s Solutions Manual, including sample solutions to all review questions
and exercises

—A companion Web site with additional resources, located at:
www.pearsonglobaleditions/connolly

Supplements are available to qualified instructors only at
www.pearsonglobaleditions/connolly. Please contact your local sales representative.

Organization of this Book

Part I: Background
Part 1 of the book serves to introduce the field of database systems and database
design.

Chapter 1 introduces the field of database management, examining the problems
with the precursor to the database system, the file-based system, and the advantages

offered by the database approach.

Chapter 2 examines the database environment, discussing the advantages offered by
the three-level ANSI-SPARC architecture, introducing the most popular data models
and outlining the functions that should be provided by a multi-user DBMS.

39

40

Preface

Chapter 3 examines multi-user DBMS architectures and discusses the different types
of middleware that exist in the database field. It also examines Web services that can be
used to provide new types of business services to users and service-oriented architec-
ture (SOA). The chapter briefly introduces the architecture for a distributed DBMS and
data warehousing presented more fully in later chapters. The chapter also looks at the
underlying software architecture for DBMSs and the logical and physical structures in

the Oracle DBMS, which could be omitted for a first course in database management.

Part 2: The Relational Model and Languages

Part 2 of the book serves to introduce the relational model and relational lan-
guages, namely the relational algebra and relational calculus, QBE (Query-By-
Example), and SQL (Structured Query Language). This part also examines two
highly popular commercial systems: Microsoft Office Access and Oracle.

Chapter 4 introduces the concepts behind the relational model, the most popular data
model at present, and the one most often chosen for standard business applications.
After introducing the terminology and showing the relationship with mathematical
relations, the relational integrity rules, entity integrity, and referential integrity are
discussed. The chapter concludes with a section on views, which is expanded upon
in Chapter 7.

Chapter 5 introduces the relational algebra and relational calculus with examples to
illustrate all the operations. This could be omitted for a first course in database man-
agement. However, relational algebra is required to understand Query Processing in
Chapter 23 and fragmentation in Chapter 24 on distributed DBMSs. In addition, the
comparative aspects of the procedural algebra and the non-procedural calculus act as

a useful precursor for the study of SQL in Chapters 6 and 7, although not essential.

Chapter 6 introduces the data manipulation statements of the SQL standard: SELECT,
INSERT, UPDATE, and DELETE. The chapter is presented as a tutorial, giving a

series of worked examples that demonstrate the main concepts of these statements.

Chapter 7 covers the main data definition facilities of the SQL standard. Again, the
chapter is presented as a worked tutorial. The chapter introduces the SQL data types
and the data definition statements, the Integrity Enhancement Feature (IEF), and
the more advanced features of the data definition statements, including the access
control statements GRANT and REVOKE. It also examines views and how they can
be created in SQL.

Chapter 8 covers some of the advanced features of SQL, including the SQL program-
ming language (SQL/PSM), triggers, and stored procedures.

Chapter 9 examines the object-relational DBMS and provides a detailed overview of

the object management features that have been added to the new release of the SQL

Preface

standard, SQL:2011. The chapter also discusses how query processing and query
optimization need to be extended to handle data type extensibility efficiently. The
chapter concludes by examining some of the object-relational features within Oracle.

Part 3: Database Analysis and Design
Part 3 of the book discusses the main techniques for database analysis and design
and how they can be applied in a practical way.

Chapter 10 presents an overview of the main stages of the database system development
lifecycle. In particular, it emphasizes the importance of database design and shows how
the process can be decomposed into three phases: conceptual, logical, and physical
database design. It also describes how the design of the application (the functional
approach) aftects database design (the data approach). A crucial stage in the database system
development lifecycle is the selection of an appropriate DBMS. This chapter discusses

the process of DBMS selection and provides some guidelines and recommendations.

Chapter 11 discusses when a database developer might use fact-finding techniques
and what types of facts should be captured. The chapter describes the most commonly
used fact-finding techniques and identifies the advantages and disadvantages of each.
The chapter also demonstrates how some of these techniques may be used during the
earlier stages of the database system lifecycle using the DreamHome case study.

Chapters 12 and 13 cover the concepts of the Entity—Relationship (ER) model and
the Enhanced Entity-Relationship (EER) model, which allows more advanced data
modeling using subclasses and superclasses and categorization. The EER model is
a popular high-level conceptual data model and is a fundamental technique of the
database design methodology presented herein. The reader is also introduced to
UML to represent ER diagrams.

Chapters 14 and 15 examine the concepts behind normalization, which is another
important technique used in the logical database design methodology. Using a series
of worked examples drawn from the integrated case study, they demonstrate how
to transition a design from one normal form to another and show the advantages of
having a logical database design that conforms to particular normal forms up to and
including fifth normal form.

Part 4: Methodology

This part of the book covers a methodology for database design. The meth-
odology is divided into three parts covering conceptual, logical, and physical
database design. Each part of the methodology is illustrated using the
DreamHome case study.

Chapter 16 presents a step-by-step methodology for conceptual database design.

It shows how to decompose the design into more manageable areas based on

41

42

Preface

individual user views, and then provides guidelines for identifying entities, attributes,

relationships, and keys.

Chapter 17 presents a step-by-step methodology for logical database design for the
relational model. It shows how to map a conceptual data model to a logical data model
and how to validate it to ensure that it supports the required transactions and follows
the rules of normalization. For database systems with multiple user views, this chapter
shows how to merge the resulting local data models together into a global data model

that represents all the user views of the part of the enterprise being modeled.

Chapters 18 and 19 present a step-by-step methodology for physical database design
for relational systems. It shows how to translate the logical data model developed
during logical database design into a physical design for a relational system. The
methodology addresses the performance of the resulting implementation by
providing guidelines for choosing file organizations and storage structures and when

to introduce controlled redundancy.

Part 5: Selected Database Issues
Part 5 of the book examines four specific topics that the authors consider neces-
sary for a modern course in database management.

Chapter 20 considers database security and administration. Security considers both the
DBMS and its environment. It illustrates security provision with Microsoft Office Access
and Oracle. The chapter also examines the security problems that can arise in a Web
environment and presents some approaches to overcoming them. The chapter concludes

with a discussion of the tasks of data administration and database administration.

Chapter 21 considers professional, legal, and ethical issues related to IT and data
management and data governance. It distinguishes between legal and ethical issues
and situations that data/database administrators face, discusses how new regulations are
placing additional requirements and responsibilities on data/database administrators,
and how legislation, such as the Sarbanes-Oxley Act and the Basel 11 accords, affect

data/database administration functions.

Chapter 22 concentrates on three functions that a Database Management System should
provide, namely transaction management, concurrency control, and recovery. These
functions are intended to ensure that the database is reliable and remains in a consistent
state when multiple users are accessing the database and in the presence of failures of
both hardware and software components. The chapter also discusses advanced transac-
tion models that are more appropriate for transactions that may be of a long duration.

The chapter concludes by examining transaction management within Oracle.

Chapter 23 examines query processing and query optimization. The chapter consid-

ers the two main techniques for query optimization: the use of heuristic rules that

Preface

order the operations in a query and the other technique that compares different strat-
egies based on their relative costs and selects the one that minimizes resource usage.

The chapter concludes by examining query processing within Oracle.

Part é: Distributed DBMSs and Replication

Part 6 of the book examines distributed DBMSs and object-based DBMSs.
Distributed database management system (DDMS) technology is one of the cur-
rent major developments in the database systems area. The previous chapters
of this book concentrate on centralized database systems, that is, systems with a
single logical database located at one site under the control of a single DBMS.

Chapter 24 discusses the concepts and problems of distributed DBMSs, with
which users can access the database at their own site, and also access data stored

at remote sites.

Chapter 25 examines various advanced concepts associated with distributed DBMSs.
In particular, it concentrates on the protocols associated with distributed transaction
management, concurrency control, deadlock management, and database recovery.
The chapter also examines the X/Open Distributed Transaction Processing (DTP)
protocol. The chapter concludes by examining data distribution within Oracle.

Chapter 26 discusses replication servers as an alternative to distributed DBMSs and
examines the issues associated with mobile databases. The chapter also examines the

data replication facilities in Oracle.

Part 7: Object DBMSs

The preceding chapters of this book concentrate on the relational model and
relational systems. The justification for this is that such systems are currently
the predominant DBMS for traditional business database applications. However,
relational systems are not without their failings, and the object-based DBMS is a
major development in the database systems area that attempts to overcome these
failings. Chapters 27-28 examine this development in some detail.

Chapter 27 introduces the object-based DBMSs and first examines the types of
advanced database applications that are emerging and discusses the weaknesses of
the relational data model that makes it unsuitable for these types of applications. It
then examines the object-oriented DBMS (OODBMS) and starts by providing an
introduction to object-oriented data models and persistent programming languages.
The chapter discusses the difference between the two-level storage model used by
conventional DBMSs and the single-level model used by OODBMSs and how this
affects data access. It also discusses the various approaches to providing persistence
in programming languages and the different techniques for pointer swizzling and

examines version management, schema evolution, and OODBMS architectures. The

43

44

Preface

chapter concludes by briefly showing how the methodology presented in Part 4 of this

book may be extended for object-oriented databases.

Chapter 28 addresses the object model proposed by the Object Data Management
Group (ODMG), which has become a de facto standard for OODBMSs. The chapter

also examines ObjectStore, a commercial OODBMS.

Part 8: The Web and DBMSs

Part 8 of the book deals with the integration of the DBMS into the Web environ-
ment, semistructured data and its relationship to XML, XML query languages,
and mapping XML to databases.

Chapter 29 examines the integration of the DBMS into the Web environment. After
providing a brief introduction to Internet and Web technology, the chapter examines
the appropriateness of the Web as a database application platform and discusses the
advantages and disadvantages of this approach. It then considers a number of the
different approaches to integrating DBMSs into the Web environment, including
scripting languages, CGI, server extensions, Java, ADO and ADO.NET, and Oracle’s

Internet Platform.

Chapter 30 examines semistructured data and then discusses XML and how XML is an
emerging standard for data representation and interchange on the Web. The chapter
then discusses XML-related technologies such as namespaces, XSL, XPath, XPointer,
XLink, SOAP, WSDL, and UDDI. It also examines how XML Schema can be used to
define the content model of an XML document and how the Resource Description
Framework (RDF) provides a framework for the exchange of metadata. The chapter
examines query languages for XML and, in particular, concentrates on XQuery, as
proposed by W3C. It also examines the extensions added to SQL:2011 to enable the
publication of XML and, more generally, mapping and storing XML in databases.

Part 9: Business Intelligence
The final part of the book considers the main technologies associated with

Business Intelligence (BI): the data warehouse, Online Analytical Processing
(OLAP), and data mining.

Chapter 31 discusses data warehousing, what it is, how it has evolved, and describes
the potential benefits and problems associated with this system. The chapter exam-
ines the architecture, the main components, and the associated tools and technologies
of a data warehouse. The chapter also discusses data marts and the issues associated
with the development and management of data marts. This chapter examines the
concepts and practicalities associated with the management of temporal data in a
data warehouse. The chapter concludes by describing the data warehousing facilities
of the Oracle DBMS.

Preface

Chapter 32 describes alternative approaches for the development of the decision-
support database of a data warehouse or data mart. The chapter describes the basic
concepts associated with dimensionality modeling and compares this technique with
traditional Entity—Relationship (ER) modeling. It also describes and demonstrates a
step-by-step methodology for designing a data warehouse using worked examples
taken from an extended version of the DreamHome case study. The chapter concludes

by describing how to design a data warehouse using the Oracle Warehouse Builder.

Chapter 33 describes Online Analytical Processing (OLAP). It discusses what OLAPis and
the main features of OLAP applications. The chapter discusses how multidimensional
data can be represented and the main categories of OLAP tools. It also discusses the
OLAP extensions to the SQL standard and how Oracle supports OLAP.

Chapter 34 describes data mining (DM). It discusses what DM is and the main fea-
tures of DM applications. The chapter describes the main characteristics of data
mining operations and associated techniques. It describes the process of DM and the
main features of DM tools, with particular coverage of Oracle DM.

Appendices—In Book
Appendix A provides a description of DreamHome, a case study that is used exten-
sively throughout the book.

Appendix B provides three additional case studies, which can be used as student

projects.

Appendix C describes two alternative data modeling notations to UML: Chen’s nota-

tion and Crow’s Foot.

Appendix D summarizes the steps in the methodology presented in Chapters 16-19
for conceptual, logical, and physical database design.

Appendix E examines an open-source lightweight RDBMS called Pyrrho imple-
mented in C# that demonstrates many of the concepts discussed in this book and can

be downloaded and used.

Appendices—Online, at www.pearsonglobaleditions/connolly
Appendix F provides some background information on file organization and stor-
age structures that is necessary for an understanding of the physical database design
methodology presented in Chapter 18 and query processing in Chapter 23.

Appendix G describes Codd’s 12 rules for a relational DBMS, which form a yardstick
against which the “real” relational DBMS products can be identified.

Appendix H provides introductions to two popular commercial relational DBMSs:
Microsoft Office Access and Oracle. Elsewhere in the book, we examine how these

systems implement various database facilities, such as security and query processing.

2

v

45

46

Preface

Appendix I examines embedded and dynamic SQL, with sample programs in C. The
chapter also examines the Open Database Connectivity (ODBC) standard, which has
emerged as a de facto industry standard for accessing heterogeneous SQL databases.

Appendix J discusses how to estimate the disk space requirements for an Oracle

database.
Appendix K provides an overview of the main object-oriented concepts.

Appendix L provides some sample Web scripts to complement Chapter 29 on Web
technology and DBMSs.

Appendix M examines the interactive query language, Query-By-Example (QBE),
which has acquired the reputation of being one of the easiest ways for nontechnical
computer users to access information in a database. The QBE language is demon-

strated using Microsoft Office Access.
Appendix N covers the Third Generation DBMS Manifestos.
Appendix O covers Postgres, an early Object-Relational DBMS.

The logical organization of the book and the suggested paths through it are illus-
trated in Figure P.1.

Corrections and Suggestions

As a textbook of this size is vulnerable to errors, disagreements, omissions, and
confusion, your input is solicited for future reprints and editions. Comments,
corrections, and constructive suggestions should be sent to me at:

thomas.connolly@uws.ac.uk

Acknowledgments

This book is the outcome of our many years of work in industry, research, and
academia. It is difficult to name everyone who has helped us in our efforts. We
apologize to anyone we may happen to omit. We first give special thanks and
apologies to our families, who over the years have been neglected, even ignored,
during our deepest concentrations.

We would like to thank the reviewers of the previous editions of the book:
William H. Gwinn, Texas Tech University; Adrian Larner, De Montfort University,
Leicester; Andrew McGettrick, University of Strathclyde; Dennis McLeod, Univer-
sity of Southern California; Josephine DeGuzman Mendoza, California State Uni-
versity; Jeft Naughton, University of Oklahoma; Junping Sun, Nova Southeastern
University; Donovan Young, Georgia Tech; Barry Eaglestone, University of Brad-
ford; John Wade, IBM; Stephano Ceri, Politecnico di Milano; Lars Gillberg, Mid
Sweden University, Oestersund; Dawn Jutla, St Mary’s University, Halifax; Julie

Part 1

1 Introduction _ | 2 Database _ | 3 Database Architectures
" Environment "| and the Web

v

Part 2 v
4 Relational Model] _ 5 Relational Algebra and
Relational Calculus
[. I
9 Object-Relational SQL 6 SQL: Data .| 7SQL: Data Definition .| 8 Advanced SQL
I Manipulation . .
Part 3 10 Database System »
Development Lifecycle | -
v v
11 Database 12 ER Modeling 13 Enhanced ER 14 Normalization 15 Advanced
Analysis e B Modeling e e Normalization
|
L
Part 4
Y A
19 Methodology— 18 Methodology- 17 Methodology- 16 Methodology—
Monitoring and Tuning |«— Physical Database |«—{ Logical Database f«— Conceptual '
the Operational System Design Design Database Design
Part 5
20 Security and 21 Professional, Legal 22 Transaction 23 Query Processing
Administration and Ethical Issues in Management <
Data Management
Part 6
4
26 Replicationand | _ 25 DDBMSs- P 24 DDBMSs- P
Mobile Databases | Advanced Concepts | Concepts and Design |
Part 7
A
28 OODBMSs-Standards | 27 OODBMSs-Concepts
and Systems h and Design
Part 8
A
30 Semistructured Data | 29 Web Technology
and XML and DBMSs
Part 9
A4
34 Data Mining P 33 OLAP ‘ 32 Data Warehousing | 31 Data Warehousing
N N Design h Concepts

Figure P.l Logical organization of the book and suggested paths through it.

48

Preface

McCann, City University, London; Munindar Singh, North Carolina State Univer-
sity; Hugh Darwen, Hursely, UK; Claude Delobel, Paris, France; Dennis Murray,
Reading, UK; Richard Cooper, University of Glasgow; Emma Eliason, University
of Orebro; Sari Hakkarainen, Stockholm University and the Royal Institute of
Technology; Nenad Jukic, Loyola University Chicago; Jan Paredaens, University
of Antwerp; Stephen Priest, Daniel Webster College; and from our own depart-
ment, John Kawala and Peter Knaggs. Many others are still anonymous to us—we
thank you for the time you must have spent on the manuscript. We would also like
to acknowledge Anne Strachan for her contribution to the first edition.

I would also like to thank Kakoli Bandyopadhyay, Lamar University; Jiang-
ping Chen, University of North Texas; Robert Donnelly, Goldey-Beacom College;
Cyrus Grant, Dominican University; David G. Hendry, University of Washing-
ton; Amir Hussain, University of Stirling; Marilyn G. Kletke, Oklahoma State
University; Farhi Marir, Knowledge Management Research Group, CCTM De-
partment, London Metropolitan University; Javed Mostafa, Indiana University,
Bloomington; Goran Nenadic, University of Manchester; Robert C. Nickerson,
San Francisco State University; Amy Phillips, University of Denver; Pamela Smith,
Lawrence Technological University.

For the sixth edition, we would like to thank Marcia Horton, our editor at
Pearson, Kayla Smith-Tarbox and Marilyn Lloyd in the production team at
Pearson and Vasundhara Sawhney, our project manager at Cenveo. We would also
like to thank Nikos Dimitrakas, Stockholm University, Sweden; Tom Carnduff,
Cardiff University, UK; David Kingston, Pittsburgh Technical Institute; Catherine
Anderson, University of MD-College Park; Xumin Liu, Rochester Institute of
Technology; Dr. Mohammed Yamin, Australian National U; Cahit Aybet, Izmir
University of Economics; Martti Laiho, Haaga-Helia University of Applied Sciences
in Finland; Fritz Laux and Tim Lessner, Reutlingen University in Germany; and
Malcolm Crowe, University of the West of Scotland, UK for their contributions.

We should also like to thank Malcolm Bronte-Stewart for the DreamHome con-
cept, Moira O’Donnell for ensuring the accuracy of the Wellmeadows Hospital case
study, Alistair McMonnies, and Richard Beeby, for their help with material for
the Web site.

Thomas M. Connolly
Carolyn E. Begg
Glasgow, February 2013

Pearson would like to thank and acknowledge Simon Msanjila and Mohamed
Ghasia, Mzumbe University for their contributions to the Global Edition, and
Preethi Subramanian, Malaysian University of Technology and Science, Vincent
Ng, The Hong Kong Polytechnic University, and Issam El-Moughrabi, Gulf

University for reviewing the Global Edition.

PART

Background

Chapter | Introduction to Databases 51
Chapter 2 Database Environment 83

Chapter 3 Database Architectures and the Web 105

49

CHAPTER

Introduction to Databases

Chapter Objectives
In this chapter you will learn:

» The importance of database systems.

+ Some common uses of database systems.

» The characteristics of file-based systems.

+ The problems with the file-based approach.

» The meaning of the term “database.”

+ The meaning of the term "database management system” (DBMS).
+ The typical functions of a DBMS.

+ The major components of the DBMS environment.
» The personnel involved in the DBMS environment.
+ The history of the development of DBMSs.

» The advantages and disadvantages of DBMSs.

While barely 50 years old, database research has had a profound impact on the
economy and society, creating an industry sector valued at between US$35-US$50
billion annually. The database system, the subject of this book, is arguably the most
important development in the field of software engineering, and the database is
now the underlying framework of the information system, fundamentally changing
the way that many organizations operate. Indeed the importance of the database
system has increased in recent years with significant developments in hardware
capability, hardware capacity, and communications, including the emergence of
the Internet, electronic commerce, business intelligence, mobile communications,
and grid computing.

Database technology has been an exciting area to work in and, since its emer-
gence, has been the catalyst for many important developments in software engi-
neering. Database research is not over and there are still many problems that need

51

52

Chapter | Introduction to Databases

to be addressed. Moreover, as the applications of database systems become even
more complex we will have to rethink many of the algorithms currently being used,
such as the algorithms for file storage, file access, and query optimization. These
original algorithms have made significant contributions in software engineering
and, without doubt, the development of new algorithms will have similar effects. In
this first chapter, we introduce the database system.

“As a result of its importance, many computing and business courses cover the
study of database systems. In this book, we explore a range of issues associated with
the implementation and applications of database systems. We also focus on how to
design a database and present a methodology that should help you design both
simply and complex databases.

Structure of this Chapter In Section 1.1, we examine some uses of
database systems that we find in everyday life but are not necessarily aware of.
In Sections 1.2 and 1.3, we compare the early file-based approach to computer-
izing the manual file system with the modern, and more usable, database ap-
proach. In Section 1.4, we discuss the four types of role that people perform in
the database environment, namely: data and database administrators, database
designers, application developers, and end-users. In Section 1.5, we provide a
brief history of database systems, and follow that in Section 1.6 with a discussion
of the advantages and disadvantages of database systems.

Throughout this book, we illustrate concepts using a case study based on
a fictitious property management company called DreamHome. We provide
a detailed description of this case study in Section 11.4 and Appendix A. In
Appendix B, we present further case studies that are intended to provide ad-
ditional realistic projects for the reader. There will be exercises based on these
case studies at the end of many chapters.

l.] Introduction

[

The database is now such an integral part of our day-to-day life that often we are
not aware that we are using one. To start our discussion of databases, in this sec-
tion we examine some applications of database systems. For the purposes of this
discussion, we consider a database to be a collection of related data and a database
management system (DBMS) to be the software that manages and controls access
to the database. A database application is simply a program that interacts with
the database at some point in its execution. We also use the more inclusive term
database system as a collection of application programs that interact with the
database along with the DBMS and the database itself. We provide more accurate
definitions in Section 1.3.

I.I Introduction

Purchases from the supermarket

When you purchase goods from your local supermarket, it is likely that a database
is accessed. The checkout assistant uses a bar code reader to scan each of your
purchases. This reader is linked to a database application that uses the bar code
to find out the price of the item from a product database. The application then
reduces the number of such items in stock and displays the price on the cash reg-
ister. If the reorder level falls below a specified threshold, the database system may
automatically place an order to obtain more of that item. If a customer telephones
the supermarket, an assistant can check whether an item is in stock by running an
application program that determines availability from the database.

Purchases using your credit card

When you purchase goods using your credit card, the assistant normally checks
whether you have sufficient credit left to make the purchase. This check may be
carried out by telephone or automatically by a card reader linked to a computer sys-
tem. In either case, there is a database somewhere that contains information about
the purchases that you have made using your credit card. To check your credit,
there is a database application that uses your credit card number to check that the
price of the goods you wish to buy, together with the sum of the purchases that
you have already made this month, is within your credit limit. When the purchase
is confirmed, the details of the purchase are added to this database. The database
application also accesses the database to confirm that the credit card is not on the
list of stolen or lost cards before authorizing the purchase. There are other data-
base applications to send out monthly statements to each cardholder and to credit
accounts when payment is received.

Booking a vacation with a travel agent

When you make inquiries about a vacation, your travel agent may access several
databases containing vacation and flight details. When you book your vacation, the
database system has to make all the necessary booking arrangements. In this case,
the system has to ensure that two different agents do not book the same vacation or
overbook the seats on the flight. For example, if there is only one seat left on the
flight from New York to London and two agents try to reserve the last seat at the
same time, the system has to recognize this situation, allow one booking to proceed,
and inform the other agent that there are now no seats available. The travel agent
may have another, usually separate, database for invoicing.

Using the local library

Your local library probably has a database containing details of the books in the
library, details of the readers, reservations, and so on. There will be a computer-
ized index that allows readers to find a book based on its title, authors, or subject
area. The database system handles reservations to allow a reader to reserve a book
and to be informed by mail or email when the book is available. The system also
sends reminders to borrowers who have failed to return books by the due date.
Typically, the system will have a bar code reader, similar to that used by the

53

54

Chapter | Introduction to Databases

supermarket described earlier, that is used to keep track of books coming in and
going out of the library.

Taking out insurance

Whenever you wish to take out insurance—for example personal insurance, prop-
erty insurance, or auto insurance, your agent may access several databases con-
taining figures for various insurance organizations. The personal details that you
supply, such as name, address, age, and whether you drink or smoke, are used by
the database system to determine the cost of the insurance. An insurance agent can
search several databases to find the organization that gives you the best deal.

Renting a DVD

When you wish to rent a DVD from a DVD rental company, you will probably find
that the company maintains a database consisting of the DVD titles that it stocks,
details on the copies it has for each title, whether the copy is available for rent or
is currently on loan, details of its members (the renters), and which DVDs they are
currently renting and date they are returned. The database may even store more
detailed information on each DVD, such as its director and its actors. The company
can use this information to monitor stock usage and predict future buying trends
based on historic rental data.

Using the Internet

Many of the sites on the Internet are driven by database applications. For example,
you may visit an online bookstore that allows you to browse and buy books, such
as Amazon.com. The bookstore allows you to browse books in different categories,
such as computing or management, or by author name. In either case, there is
a database on the organization’s Web server that consists of book details, avail-
ability, shipping information, stock levels, and order history. Book details include
book titles, ISBNs, authors, prices, sales histories, publishers, reviews, and detailed
descriptions. The database allows books to be cross-referenced: for example, a
book may be listed under several categories, such as computing, programming
languages, bestsellers, and recommended titles. The cross-referencing also allows
Amazon to give you information on other books that are typically ordered along
with the title you are interested in.

As with an earlier example, you can provide your credit card details to purchase
one or more books online. Amazon.com personalizes its service for customers who
return to its site by keeping a record of all previous transactions, including items
purchased, shipping, and credit card details. When you return to the site, you
might be greeted by name and presented with a list of recommended titles based
on previous purchases.

Studying at College

If you are at college, there will be a database system containing information about
yourself, your major and minor fields, the courses you are enrolled in, details
about your financial aid, the classes you have taken in previous years or are taking

1.2 Traditional File-Based Systems

this year, and details of all your examination results. There may also be a database
containing details relating to the next year’s admissions and a database containing
details of the staff working at the university, giving personal details and salary-
related details for the payroll office.

These are only a few of the applications for database systems, and you will no
doubt know of plenty of others. Though we now take such applications for granted,
the database system is a highly complex technology that has been developed over
the past 40 years. In the next section, we discuss the precursor to the database sys-
tem: the file-based system.

1.2 Traditional File-Based Systems

| IE—

It is almost a tradition that comprehensive database books introduce the database
system with a review of its predecessor, the file-based system. We will not depart
from this tradition. Although the file-based approach is largely obsolete, there are
good reasons for studying it:

+ Understanding the problems inherent in file-based systems may prevent us from
repeating these problems in database systems. In other words, we should learn
from our earlier mistakes. Actually, using the word “mistakes” is derogatory and
does not give any cognizance to the work that served a useful purpose for many
years. However, we have learned from this work that there are better ways to
handle data.

« If you wish to convert a file-based system to a database system, understanding
how the file system works will be extremely useful, if not essential.

1.2.1 File-Based Approach

File-based A collection of application programs that perform services for_the
end-users, such as the production of reports. Each program defines

system .
and manages its own data.

File-based systems were an early attempt to computerize the manual filing system
that we are all familiar with. For example, an organization might have physical files
set up to hold all external and internal correspondence relating to a project, prod-
uct, task, client, or employee. Typically, there are many such files, and for safety
they are labeled and stored in one or more cabinets. For security, the cabinets may
have locks or may be located in secure areas of the building. In our own home, we
probably have some sort of filing system that contains receipts, warranties,
invoices, bank statements, and so on. When we need to look something up, we go
to the filing system and search through the system, starting at the first entry, until
we find what we want. Alternatively, we might have an indexing system that helps
locate what we want more quickly. For example, we might have divisions in the
filing system or separate folders for different types of items that are in some way
logically related.

The manual filing system works well as long as the number of items to be stored
is small. It even works adequately when there are large numbers of items and we
only have to store and retrieve them. However, the manual filing system breaks
down when we have to cross-reference or process the information in the files. For

55

56

Chapter | Introduction to Databases

example, a typical real estate agent’s office might have a separate file for each
property for sale or rent, each potential buyer and renter, and each member of
staff. Consider the effort that would be required to answer the following questions:

+ What three-bedroom properties do you have for sale with an acre of land and a
garage?

+ What apartments do you have for rent within three miles of downtown?

+ What is the average rent for a two-bedroom apartment?

+ What is the annual total for staff salaries?

+ How does last month’s net income compare with the projected figure for this
month?

+ What is the expected monthly net income for the next financial year?

Increasingly nowadays, clients, senior managers, and staff want more and more
information. In some business sectors, there is a legal requirement to produce
detailed monthly, quarterly, and annual reports. Clearly, the manual system is
inadequate for this type of work. The file-based system was developed in response
to the needs of industry for more efficient data access. However, rather than
establish a centralized store for the organization’s operational data, a decentral-
ized approach was taken, where each department, with the assistance of Data
Processing (DP) staff, stored and controlled its own data. To understand what this
means, consider the DreamHome example.

The Sales Department is responsible for the selling and renting of properties.
For example, whenever a client who wishes to offer his or her property as a rental
approaches the Sales Department, a form similar to the one shown in Figure 1.1(a)
is completed. The completed form contains details on the property, such as address,
number of rooms, and the owner’s contact information. The Sales Department also
handles inquiries from clients, and a form similar to the one shown in Figure 1.1(b)
is completed for each one. With the assistance of the DP Department, the Sales
Department creates an information system to handle the renting of property. The
system consists of three files containing property, owner, and client details, as illus-
trated in Figure 1.2. For simplicity, we omit details relating to members of staff,
branch offices, and business owners.

The Contracts Department is responsible for handling the lease agreements asso-
ciated with properties for rent. Whenever a client agrees to rent a property, a form
with the client and property details is filled in by one of the sales staft, as shown
in Figure 1.3. This form is passed to the Contracts Department, which allocates a
lease number and completes the payment and rental period details. Again, with the
assistance of the DP Department, the Contracts Department creates an information
system to handle lease agreements. The system consists of three files that store
lease, property, and client details, and that contain similar data to that held by the
Sales Department, as illustrated in Figure 1.4

The process is illustrated in Figure 1.5. It shows each department accessing
their own files through application programs written especially for them. Each
set of departmental application programs handles data entry, file maintenance,
and the generation of a fixed set of specific reports. More important, the physical
structure and storage of the data files and records are defined in the application
code.

"woy sjreye ualD (q) ‘wlioy sjie3a Juay 404 Aedoud () 'suioy Juswiieds saeg |°| 94n814

(e)

adA] ssauisng

aweN joejuo)

@) ‘ON JaumQ /300 'ON JaumQ
'ON‘I9L olv/-L92-1710 "ON’I9L
mobseln Ayo youelg €004 "ON ysueug
XA6 2¢O mobse|o
cl-JeN-yZ 8yeq yooag uuy Ag useg ssoIppY T icfemvo ssoIppY
awepN ssauisng [odded (048D BweN

4snbny Ul palilew buiiqe)

squaded yaim awoy 1e Buial Aguaaing) SJUSWILOYD [BI18USS)
s|iejaq s JaumQ

0G/ uay Alyuoy wnwixely esnoy adA) Aysadoud paiiasaid

4099¢g uuy G swooy Jo 'ON
s|ieyaq juawalinbay Ayiadoid ajqisuodsay yels
009 juay oonoy adAl
- 2lo 8poljsod
OAL Olvd 2004 "ON Youeig
GLIC6Z-GLY0 "ON'I8L ic ulel gl ssalppy mobseln Ao
MobSE|S) ‘A5 UlE 29|
214oaly Bwep jseT NN dweN Isii4 :youelg 0} pajedo||y Py olea gl ssalppy
¥/¥0 aquiny jualD 1294 aquinN Ajadold
s|ielaq walD s|ie}aq Juay Joj Ajuadoud

awoHweaiq awoHweaiq

57

58 Chapter | Introduction to Databases

PropertyForRent
propertyNo | street city postcode | type rooms | rent ownerNo
PA14 16 Holhead Rd | Aberdeen | AB7 5SU | House |6 650 CO46
PL94 6 Argyll St London | NW2 Flat 4 400 CO87
PG4 6 Lawrence St | Glasgow | G119QX | Flat 3 350 CO40
PG36 2 Manor Rd Glasgow [G324QX | Flat 3 375 C093
PG21 18 Dale Rd Glasgow [G12 House |5 600 CO87
PGl6 5 Novar Dr Glasgow | G129AX [Flat 4 450 CO93

PrivateOwner
ownerNo fName IName address telNo
CO46 Joe Keogh 2 Fergus Dr, Aberdeen AB2 78X | 01224-861212
CO87 Carol Farrel 6 Achray St, Glasgow G32 9DX | 0141-357-7419
CO40 Tina Murphy | 63 Well St, Glasgow G42 0141-943-1728
CO93 Tony Shaw 12 Park PI, Glasgow G4 0QR 0141-225-7025

Client
clientNo fName IName address telNo prefType | maxRent
CR76 John Kay 56 High St, London SW1 4EH [0207-774-5632 | Flat 425
CR56 Aline Stewart | 64 Fern Dr, Glasgow G42 OBL | 0141-848-1825 | Flat 350
CR74 Mike Ritchie 18 Tain St, PA1G 1YQ 01475-392178 | House 750
CR62 Mary Tregear | 5 Tarbot Rd, Aberdeen AB9 3ST | 01224-196720 | Flat 600

Figure 1.3
Lease Details
form used
by Contracts
Department.

Figure 1.2 The PropertyForRent, PrivateOwner, and Client files used by Sales.

DreamHome
Lease Details
Lease Number:

10012

Client No. CR74

Full Name Mike Ritchie

Address (previous) 18 Tain St

Tel. No. 01475-392178&

Address

PAIG 1YQ

Property No. PG21

18 Dale Rd

Glasgow G12

Payment Details

Monthly Rent 600

Payment Method Cheque

Deposit 1200 Paid (Y or N) Y

Duration

Rent Start Date

1-Jul-13

1Year

Rent Finish Date 30-Jun-14

1.2 Traditional File-Based Systems 59

Lease Figure 1.4
-)) .) The Lease,
leaseNo | propertyNo | clientNo | rent | payment | deposit | paid | rentStart | rentFinish | duration ProbertyForRent
Method perty '
and Client
10024 PA14 CR62 650 | Visa 1300 Y 1-Jun-13 | 31-May-14 |12 files used by
10075 | PL94 CR76 400 | Cash 800 [N |1-Aug-13 [31-Jan-14 | 6 the Contracts
10012 |PG21 CR74 | 600 |Cheque [1200 |Y |1-Jul-13 |[30-Jun-14 |12 Department.
PropertyForRent
propertyNo | street city postcode | rent
PAl4 16 Holhead | Aberdeen | AB7 55U | 650
PL94 6 Argyll St | London |NW2 400
PG21 18 Dale Rd | Glasgow | G12 600
Client
clientNo | fName [IName | address telNo
CR76 John Kay 56 High St, London SW14EH | 0171-774-5632
CR74 Mike Ritchie | 18 Tain St, PA1G 1YQ 01475-392178
CR62 Mary | Tregear | 5 Tarbot Rd, Aberdeen AB9 3ST | 01224-196720
~ i i Figure 1.5
File handling File-based
‘:‘ — Data entry routines — le- as¢
b and reports processing.
File definition

i
i

We can find similar examples in other departments. For example, the Payroll

Contracts

Sales Files

Sales applica

tion programs

Sales files

File handling
Data entry routines —
and reports

File definition

Contracts application programs

Contracts files

PropertyForRent (propertyNo, street, city, postcode, type, rooms, rent, ownerNo)
PrivateOwner (ownerNo, fName, IName, address, teINo)
Client (clientNo, fName, IName, address, telNo, prefType, maxRent)

Contracts Files

Lease (leaseNo, propertyNo, clientNo, rent, paymentMethod, deposit, paid, rentStart, rentFinish, duration)
PropertyForRent (propertyNo, street, city, postcode, rent)
Client (clientNo, fName, IName, address, telNo)

Department stores details relating to each member of staff’s salary:

StaffSalary(staffNo, fName, IName, sex, salary, branchNo)

The Human Resources (HR) Department also stores staff details:

Staff(staffNo, fName, IName, position, sex, dateOfBirth, salary, branchNo)

60

Chapter | Introduction to Databases

It can be seen quite clearly that there is a significant amount of duplication of data
in these departments, and this is generally true of file-based systems. Before we
discuss the limitations of this approach, it may be useful to understand the termi-
nology used in file-based systems. A file is simply a collection of records, which
contains logically related data. For example, the PropertyForRent file in Figure 1.2
contains six records, one for each property. Each record contains a logically con-
nected set of one or more fields, where each field represents some characteristic
of the real-world object that is being modeled. In Figure 1.2, the fields of the
PropertyForRent file represent characteristics of properties, such as address, property
type, and number of rooms.

1.2.2 Limitations of the File-Based Approach

This brief description of traditional file-based systems should be sufficient to discuss
the limitations of this approach. We list five problems in Table 1.1.

Separation and isolation of data

When data is isolated in separate files, it is more difficult to access data that should
be available. For example, if we want to produce a list of all houses that match the
requirements of clients, we first need to create a temporary file of those clients who
have “house” as the preferred type. We then search the PropertyForRent file for those
properties where the property type is “house” and the rent is less than the client’s
maximum rent. With file systems, such processing is difficult. The application
developer must synchronize the processing of two files to ensure that the correct
data is extracted. This difficulty is compounded if we require data from more than
two files.

Duplication of data

Owing to the decentralized approach taken by each department, the file-based
approach encouraged, if not necessitated, the uncontrolled duplication of data. For
example, in Figure 1.5 we can clearly see that there is duplication of both property
and client details in the Sales and Contracts Departments. Uncontrolled duplica-
tion of data is undesirable for several reasons, including:

« Duplication is wasteful. It costs time and money to enter the data more than once.

- It takes up additional storage space, again with associated costs. Often, the dupli-
cation of data can be avoided by sharing data files.

TABLE I.1 Limitations of file-based systems.
Separation and isolation of data
Duplication of data
Data dependence
Incompatible file formats

Fixed queries/proliferation of application programs

1.2 Traditional File-Based Systems

+ Perhaps more importantly, duplication can lead to loss of data integrity; in
other words, the data is no longer consistent. For example, consider the dupli-
cation of data between the Payroll and HR Departments described previously.
If a member of staff moves and the change of address is communicated only to
HR and not to Payroll, the person’s paycheck will be sent to the wrong address.
A more serious problem occurs if an employee is promoted with an associated
increase in salary. Again, let’s assume that the change is announced to HR, but
the change does not filter through to Payroll. Now, the employee is receiv-
ing the wrong salary. When this error is detected, it will take time and effort to
resolve. Both these examples illustrate inconsistencies that may result from the
duplication of data. As there is no automatic way for HR to update the data in
the Payroll files, it is not difficult to foresee such inconsistencies arising. Even
if Payroll is notified of the changes, it is possible that the data will be entered
incorrectly.

Data dependence

As we have already mentioned, the physical structure and storage of the data files
and records are defined in the application code. This means that changes to an
existing structure are difficult to make. For example, increasing the size of the
PropertyForRent address field from 40 to 41 characters sounds like a simple change,
but it requires the creation of a one-off program (that is, a program that is run only
once and can then be discarded) that converts the PropertyForRent file to the new
format. This program has to:

+ Open the original PropertyForRent file for reading

+ Open a temporary file with the new structure

+ Read a record from the original file, convert the data to conform to the new
structure, and write it to the temporary file, then repeat this step for all records
in the original file

+ Delete the original PropertyForRent file

+ Rename the temporary file as PropertyForRent

In addition, all programs that access the PropertyForRent file must be modified to
conform to the new file structure. There might be many such programs that access
the PropertyForRent file. Thus, the programmer needs to identify all the affected
programs, modify them, and then retest them. Note that a program does not even
have to use the address field to be affected: it only has to use the PropertyForRent
file. Clearly, this process could be very time-consuming and subject to error. This
characteristic of file-based systems is known as program-data dependence.

Incompatible file formats

Because the structure of files is embedded in the application programs, the struc-
tures are dependent on the application programming language. For example,
the structure of a file generated by a COBOL program may be different from the
structure of a file generated by a C program. The direct incompatibility of such files
makes them difficult to process jointly.

For example, suppose that the Contracts Department wants to find the names and
addresses of all owners whose property is currently rented out. Unfortunately,

61

62

Chapter | Introduction to Databases

Contracts does not hold the details of property owners; only the Sales
Department holds these. However, Contracts has the property number (prop-
ertyNo), which can be used to find the corresponding property number in the
Sales Department’s PropertyForRent file. This file holds the owner number
(ownerNo), which can be used to find the owner details in the PrivateOwner file. The
Contracts Department programs in COBOL and the Sales Department programs
in C. Therefore, matching propertyNo fields in the two PropertyForRent files requires
that an application developer write software to convert the files to some common
format to facilitate processing. Again, this process can be time-consuming and
expensive.

Fixed queries/proliferation of application programs

From the end-user’s point of view, file-based systems were a great improvement
over manual systems. Consequently, the requirement for new or modified queries
grew. However, file-based systems are very dependent upon the application devel-
oper, who has to write any queries or reports that are required. As a result, two
things happened. In some organizations, the type of query or report that could be
produced was fixed. There was no facility for asking unplanned (that is, spur-of-
the-moment or ad hoc) queries either about the data itself or about which types of
data were available.

In other organizations, there was a proliferation of files and application pro-
grams. Eventually, this reached a point where the DP Department, with its existing
resources, could not handle all the work. This put tremendous pressure on the
DP staff, resulting in programs that were inadequate or inefficient in meeting the
demands of the users, limited documentation, and difficult maintenance. Often,
certain types of functionality were omitted:

« There was no provision for security or integrity.

+ Recovery, in the event of a hardware or software failure, was limited or
nonexistent.

- Access to the files was restricted to one user at a time—there was no provision for
shared access by staff in the same department.

In either case, the outcome was unacceptable. Another solution was required.

.3 Database Approach

[

All of the previously mentioned limitations of the file-based approach can be attrib-
uted to two factors:

(I) The definition of the data is embedded in the application programs, rather
than being stored separately and independently.

(2) There is no control over the access and manipulation of data beyond that
imposed by the application programs.

To become more effective, a new approach was required. What emerged were the
database and the Database Management System (DBMS). In this section, we provide
a more formal definition of these terms, and examine the components that we might
expect in a DBMS environment.

1.3 Database Approach

1.3.1 The Database

A shared collection of logically related data and its description,

Database . . . o
designed to meet the information needs of an organization.

We now examine the definition of a database so that you can understand the
concept fully. The database is a single, possibly large repository of data that can
be used simultaneously by many departments and users. Instead of disconnected
files with redundant data, all data items are integrated with a minimum amount of
duplication. The database is no longer owned by one department but is a shared
corporate resource. The database holds not only the organization’s operational
data, but also a description of this data. For this reason, a database is also defined
as a self-describing collection of integrated records. The description of the data is known
as the system catalog (or data dictionary or metadata—the “data about data”). It is
the self-describing nature of a database that provides program-data independence.

The approach taken with database systems, where the definition of data is sepa-
rated from the application programs, is similar to the approach taken in modern
software development, where an internal definition of an object and a separate
external definition are provided. The users of an object see only the external
definition and are unaware of how the object is defined and how it functions. One
advantage of this approach, known as data abstraction, is that we can change the
internal definition of an object without affecting the users of the object, provided
that the external definition remains the same. In the same way, the database
approach separates the structure of the data from the application programs and
stores it in the database. If new data structures are added or existing structures are
modified, then the application programs are unaffected, provided that they do not
directly depend upon what has been modified. For example, if we add a new field
to a record or create a new file, existing applications are unaffected. However, if we
remove a field from a file that an application program uses, then that application
program is affected by this change and must be modified accordingly.

Another expression in the definition of a database that we should explain is
“logically related.” When we analyze the information needs of an organization,
we attempt to identify entities, attributes, and relationships. An entity is a distinct
object (a person, place, thing, concept, or event) in the organization that is to be
represented in the database. An attribute is a property that describes some aspect
of the object that we wish to record, and a relationship is an association between
entities. For example, Figure 1.6 shows an Entity—Relationship (ER) diagram for
part of the DreamHome case study. It consists of:

- six entities (the rectangles): Branch, Staff, PropertyForRent, Client, PrivateOwner, and
Lease;

+ seven relationships (the names adjacent to the lines): Has, Offers, Oversees, Views,
Owns, LeasedBy, and Holds;

- six attributes, one for each entity: branchNo, staffNo, propertyNo, clientNo, ownerNo, and
leaseNo.

The database represents the entities, the attributes, and the logical relationships
between the entities. In other words, the database holds data that is logically
related. We discuss the ER model in detail in Chapters 12 and 13.

63

Chapter | Introduction to Databases
Branch Has » Staff
branchNo A x staffNo
1.1 0.1
Offers Overseevs
v
0..100
— PropertyForRent < Views Client
N propertyNo 0..* 0.* clientNo
1.1 1.1
A
Owns
LeasedBy Holds
0.1 v v
PrivateOwner 0.* Lease 0.*
ownerNo leaseNo

Figure 1.6 Example Entity—Relationship diagram.

1.3.2 The Database Management System (DBMS)

A software system that enables users to define, create, maintain, and

DBMS control access to the database.

The DBMS is the software that interacts with the users’ application programs and
the database. Typically, a DBMS provides the following facilities:

- It allows users to define the database, usually through a Data Definition
Language (DDL). The DDL allows users to specify the data types and structures
and the constraints on the data to be stored in the database.

« It allows users to insert, update, delete, and retrieve data from the database, usu-
ally through a Data Manipulation Language (DML). Having a central repository
for all data and data descriptions allows the DML to provide a general inquiry
facility to this data, called a query language. The provision of a query language
alleviates the problems with file-based systems where the user has to work with a
fixed set of queries or there is a proliferation of programs, causing major software
management problems. The most common query language is the Structured
Query Language (SQL, pronounced “S-Q-L”, or sometimes “See-Quel”), which
is now both the formal and de facto standard language for relational DBMSs. To
emphasize the importance of SQL, we devote Chapters 6-9 and Appendix I to a
comprehensive study of this language.

- It provides controlled access to the database. For example, it may provide:

a security system, which prevents unauthorized users accessing the database;

- an integrity system, which maintains the consistency of stored data;

- a concurrency control system, which allows shared access of the database;

a recovery control system, which restores the database to a previous consistent
state following a hardware or software failure;

- auser-accessible catalog, which contains descriptions of the data in the database.

1.3 Database Approach

1.3.3 (Database) Application Programs

Application A computer program that interacts with the database by issuing
Programs an appropriate request (typically an SQL statement) to the DBMS.

Users interact with the database through a number of application programs that
are used to create and maintain the database and to generate information. These
programs can be conventional batch applications or, more typically nowadays,
online applications. The application programs may be written in a programming
language or in higher-level fourth-generation language.

The database approach is illustrated in Figure 1.7, based on the file approach
of Figure 1.5. It shows the Sales and Contracts Departments using their applica-
tion programs to access the database through the DBMS. Each set of departmental
application programs handles data entry, data maintenance, and the generation of
reports. However, as opposed to the file-based approach, the physical structure and
storage of the data are now managed by the DBMS.

Views

With this functionality, the DBMS is an extremely powerful and useful tool.
However, as the end-users are not too interested in how complex or easy a task is
for the system, it could be argued that the DBMS has made things more complex,
because they now see more data than they actually need or want. For example, the
details that the Contracts Department wants to see for a rental property, as shown
in Figure 1.5, have changed in the database approach, shown in Figure 1.7. Now
the database also holds the property type, the number of rooms, and the owner
details. In recognition of this problem, a DBMS provides another facility known
as a view mechanism, which allows each user to have his or her own view of the

Database system

PropertyForRent,
PrivateOwner, Client
. Data entry v
> and Lease details
and rep e \ + File definitions
™~
Sales \
application programs DBMS < >
//
N Datalaii 2 Database

and reports

Contracts
application programs

Contracts

PropertyForRent (propertyNo, street, city, postcode, type, rooms, rent, ownerNo)
PrivateOwner (ownerNo, fName, IName, address, teINo)

Client (clientNo, fName, IName, address, telNo, prefType, maxRent)

Lease (leaseNo, propertyNo, clientNo, paymentMethod, deposit, paid, rentStart, rentFinish)

Figure 1.7 Database processing.

65

66

Chapter | Introduction to Databases

database (a view is, in essence, some subset of the database). For example, we could
set up a view that allows the Contracts Department to see only the data that they
want to see for rental properties.

As well as reducing complexity by letting users see the data in the way they want
to see it, views have several other benefits:

« Views provide a level of security. Views can be set up to exclude data that some users
should not see. For example, we could create a view that allows a branch manager
and the Payroll Department to see all staff data, including salary details, and we
could create a second view that other staff would use that excludes salary details.

« Views provide a mechanism to customize the appearance of the database. For example,
the Contracts Department may wish to call the monthly rent field (rent) by the
more obvious name, Monthly Rent.

A view can present a consistent, unchanging picture of the structure of the database, even
if the underlying database is changed (for example, fields added or removed,
relationships changed, files split, restructured, or renamed). If fields are added
or removed from a file, and these fields are not required by the view, the view is
not aftected by this change. Thus, a view helps provide the program-data inde-
pendence we mentioned previously.

The previous discussion is general and the actual level of functionality offered by
a DBMS differs from product to product. For example, a DBMS for a personal
computer may not support concurrent shared access, and may provide only lim-
ited security, integrity, and recovery control. However, modern, large multi-user
DBMS products offer all the functions mentioned and much more. Modern sys-
tems are extremely complex pieces of software consisting of millions of lines of
code, with documentation comprising many volumes. This complexity is a result
of having to provide software that handles requirements of a more general nature.
Furthermore, the use of DBMSs nowadays requires a system that provides almost
total reliability and 24/7 availability (24 hours a day, 7 days a week), even in the
presence of hardware or software failure. The DBMS is continually evolving and
expanding to cope with new user requirements. For example, some applications
now require the storage of graphic images, video, sound, and so on. To reach this
market, the DBMS must change. It is likely that new functionality will always be
required, so the functionality of the DBMS will never become static. We discuss the
basic functions provided by a DBMS in later chapters.

1.3.4 Components of the DBMS Environment

We can identify five major components in the DBMS environment: hardware, soft-
ware, data, procedures, and people, as illustrated in Figure 1.8.

Data
Hardware Software m Procedures People

| | Bridge |]
Machine Human

Figure 1.8 The DBMS environment.

1.3 Database Approach 67

Hardware

The DBMS and the applications require hardware to run. The hardware can range

from a single personal computer to a single mainframe or a network of comput-

ers. The particular hardware depends on the organization’s requirements and the

DBMS used. Some DBMSs run only on particular hardware or operating systems,

while others run on a wide variety of hardware and operating systems. A DBMS

requires a minimum amount of main memory and disk space to run, but this mini-

mum configuration may not necessarily give acceptable performance. A simplified A
hardware configuration for DreamHome is illustrated in Figure 1.9. It consists of ﬁm
a network of small servers, with a central server located in London running the N
backend of the DBMS, that is, the part of the DBMS that manages and controls

access to the database. It also shows several computers at various locations running

the frontend of the DBMS, that is, the part of the DBMS that interfaces with the

user. This is called a client-server architecture: the backend is the server and the
frontends are the clients. We discuss this type of architecture in Section 3.1.

Po BB
|

— 1] Northern

- Office

=
' E
J— Western Office L Database server Eastern Office = (]
(. ondon
= Office | =
@E | = |
B J
[=
Database | s l!
}
Clients = Clients

| Southern
Office

Clients

Figure 1.9 DreamHome hardware configuration.

68

Chapter | Introduction to Databases

Software

The software component comprises the DBMS software itself and the application
programs, together with the operating system, including network software if the
DBMS is being used over a network. Typically, application programs are written
in a third-generation programming language (3GL), such as C, C++, C#, Java,
Visual Basic, COBOL, Fortran, Ada, or Pascal, or a fourth-generation language
(4GL), such as SQL, embedded in a third-generation language. The target DBMS
may have its own fourth-generation tools that allow rapid development of appli-
cations through the provision of nonprocedural query languages, reports genera-
tors, forms generators, graphics generators, and application generators. The use
of fourth-generation tools can improve productivity significantly and produce
programs that are easier to maintain. We discuss fourth-generation tools in
Section 2.2.3.

Data

Perhaps the most important component of the DBMS environment—certainly from
the end-users’ point of view—is the data. In Figure 1.8, we observe that the data
acts as a bridge between the machine components and the human components.
The database contains both the operational data and the metadata, the “data about
data.” The structure of the database is called the schema. In Figure 1.7, the schema
consists of four files, or tables, namely: PropertyForRent, PrivateOwner, Client, and
Lease. The PropertyForRent table has eight fields, or attributes, namely: propertyNo,
street, city, zipCode, type (the property type), rooms (the number of rooms), rent (the
monthly rent), and ownerNo. The ownerNo attribute models the relationship between
PropertyForRent and PrivateOwner: that is, an owner Owns a property for rent, as
depicted in the ER diagram of Figure 1.6. For example, in Figure 1.2 we observe
that owner CO46, Joe Keogh, owns property PA14.

The data also incorporates the system catalog, which we discuss in detail in
Section 2.4.

Procedures

Procedures refer to the instructions and rules that govern the design and use of the
database. The users of the system and the staff who manage the database require
documented procedures on how to use or run the system. These may consist of
instructions on how to:

+ Log on to the DBMS.

« Use a particular DBMS facility or application program.
« Start and stop the DBMS.

+ Make backup copies of the database.

- Handle hardware or software failures. This may include procedures on how to
identify the failed component, how to fix the failed component (for example,
telephone the appropriate hardware engineer), and, following the repair of the
fault, how to recover the database.

+ Change the structure of a table, reorganize the database across multiple disks,
improve performance, or archive data to secondary storage.

1.4 Roles in the Database Environment

People

The final component is the people involved with the system. We discuss this com-
ponent in Section 1.4.

1.3.5 Database Design: The Paradigm Shift

Until now, we have taken it for granted that there is a structure to the data in the
database. For example, we have identified four tables in Figure 1.7: PropertyForRent,
PrivateOwner, Client, and Lease. But how did we get this structure? The answer is
quite simple: the structure of the database is determined during database design.
However, carrying out database design can be extremely complex. To produce a
system that will satisfy the organization’s information needs requires a different
approach from that of file-based systems, where the work was driven by the appli-
cation needs of individual departments. For the database approach to succeed, the
organization now has to think of the data first and the application second. This
change in approach is sometimes referred to as a paradigm shifi. For the system
to be acceptable to the end-users, the database design activity is crucial. A poorly
designed database will generate errors that may lead to bad decisions, which may
have serious repercussions for the organization. On the other hand, a well-designed
database produces a system that provides the correct information for the decision-
making process to succeed in an efficient way.

The objective of this book is to help effect this paradigm shift. We devote several
chapters to the presentation of a complete methodology for database design (see
Chapters 16-19). It is presented as a series of simple-to-follow steps, with guidelines
provided throughout. For example, in the ER diagram of Figure 1.6, we have iden-
tified six entities, seven relationships, and six attributes. We provide guidelines to
help identify the entities, attributes, and relationships that have to be represented
in the database.

Unfortunately, database design methodologies are not very popular. Many organ-
izations and individual designers rely very little on methodologies for conducting
the design of databases, and this is commonly considered a major cause of failure in
the development of database systems. Owing to the lack of structured approaches to
database design, the time or resources required for a database project are typically
underestimated, the databases developed are inadequate or inefficient in meeting
the demands of applications, documentation is limited, and maintenance is difficult.

| .4 Roles in the Database Environment

|

In this section, we examine what we listed in the previous section as the fifth compo-
nent of the DBMS environment: the people. We can identify four distinct types of
people who participate in the DBMS environment: data and database administra-
tors, database designers, application developers, and end-users.

1.4.1 Data and Database Administrators

The database and the DBMS are corporate resources that must be managed
like any other resource. Data and database administration are the roles gener-
ally associated with the management and control of a DBMS and its data. The

69

70

Chapter | Introduction to Databases

Data Administrator (DA) is responsible for the management of the data resource,
including database planning; development and maintenance of standards, policies
and procedures; and conceptual/logical database design. The DA consults with and
advises senior managers, ensuring that the direction of database development will
ultimately support corporate objectives.

The Database Administrator (DBA) is responsible for the physical realization of
the database, including physical database design and implementation, security and
integrity control, maintenance of the operational system, and ensuring satisfactory
performance of the applications for users. The role of the DBA is more technically
oriented than the role of the DA, requiring detailed knowledge of the target DBMS
and the system environment. In some organizations there is no distinction between
these two roles; in others, the importance of the corporate resources is reflected in
the allocation of teams of staff dedicated to each of these roles. We discuss data and
database administration in more detail in Section 20.15.

1.4.2 Database Designers

In large database design projects, we can distinguish between two types of
designer: logical database designers and physical database designers. The logical
database designer is concerned with identifying the data (that is, the entities and
attributes), the relationships between the data, and the constraints on the data that
is to be stored in the database. The logical database designer must have a thor-
ough and complete understanding of the organization’s data and any constraints
on this data (the constraints are sometimes called business rules). These con-
straints describe the main characteristics of the data as viewed by the organization.
Examples of constraints for DreamHome are:

- a member of staff cannot manage more than 100 properties for rent or sale at the
same time;
- a member of staff cannot handle the sale or rent of his or her own property;

« a solicitor cannot act for both the buyer and seller of a property.

To be eftective, the logical database designer must involve all prospective database
users in the development of the data model, and this involvement should begin as
early in the process as possible. In this book, we split the work of the logical data-
base designer into two stages:

- conceptual database design, which is independent of implementation details,
such as the target DBMS, application programs, programming languages, or any
other physical considerations;

« logical database design, which targets a specific data model, such as relational,
network, hierarchical, or object-oriented.

The physical database designer decides how the logical database design is to be
physically realized. This involves:

- mapping the logical database design into a set of tables and integrity constraints;

- selecting specific storage structures and access methods for the data to achieve
good performance;

« designing any security measures required on the data.

1.5 History of Database Management Systems

Many parts of physical database design are highly dependent on the target DBMS,
and there may be more than one way of implementing a mechanism. Consequently,
the physical database designer must be fully aware of the functionality of the target
DBMS and must understand the advantages and disadvantages of each alternative
implementation. The physical database designer must be capable of selecting a suit-
able storage strategy that takes account of usage. Whereas conceptual and logical
database design are concerned with the what, physical database design is concerned
with the how. It requires different skills, which are often found in different people.
We present a methodology for conceptual database design in Chapter 16, for logi-
cal database design in Chapter 17, and for physical database design in Chapters
18 and 19.

1.4.3 Application Developers

Once the database has been implemented, the application programs that provide
the required functionality for the end-users must be implemented. This is the
responsibility of the application developers. Typically, the application developers
work from a specification produced by systems analysts. Each program contains
statements that request the DBMS to perform some operation on the database,
which includes retrieving data, inserting, updating, and deleting data. The pro-
grams may be written in a third-generation or fourth-generation programming
language, as discussed previously.

1.4.4 End-Users

The end-users are the “clients” of the database, which has been designed and
implemented and is being maintained to serve their information needs. End-users
can be classified according to the way they use the system:

+ Naive users are typically unaware of the DBMS. They access the database through
specially written application programs that attempt to make the operations as
simple as possible. They invoke database operations by entering simple com-
mands or choosing options from a menu. This means that they do not need to
know anything about the database or the DBMS. For example, the checkout
assistant at the local supermarket uses a bar code reader to find out the price of
the item. However, there is an application program present that reads the bar
code, looks up the price of the item in the database, reduces the database field
containing the number of such items in stock, and displays the price on the till.

+ Sophisticated users. At the other end of the spectrum, the sophisticated end-user
is familiar with the structure of the database and the facilities offered by the
DBMS. Sophisticated end-users may use a high-level query language such as SQL
to perform the required operations. Some sophisticated end-users may even write
application programs for their own use.

1.5 History of Database Management Systems

-,

We have already seen that the predecessor to the DBMS was the file-based sys-
tem. However, there was never a time when the database approach began and
the file-based system ceased. In fact, the file-based system still exists in specific
areas. It has been suggested that the DBMS has its roots in the 1960s Apollo

71

72

Chapter | Introduction to Databases

moon-landing project, which was initiated in response to President Kennedy’s
objective of landing a man on the moon by the end of that decade. At that time,
there was no system available that would be able to handle and manage the vast
amounts of information that the project would generate.

As a result, North American Aviation (NAA, now Rockwell International),
the prime contractor for the project, developed software known as GUAM (for
Generalized Update Access Method). GUAM was based on the concept that smaller
components come together as parts of larger components, and so on, until the
final product is assembled. This structure, which conforms to an upside-down tree,
is also known as a hierarchical structure. In the mid-1960s, IBM joined NAA to
develop GUAM into what is now known as IMS (for Information Management
System). The reason that IBM restricted IMS to the management of hierarchies of
records was to allow the use of serial storage devices; most notably magnetic tape,
which was a market requirement at that time. This restriction was subsequently
dropped. Although one of the earliest commercial DBMSs, IMS is still the main
hierarchical DBMS used by most large mainframe installations.

In the mid-1960s, another significant development was the emergence of IDS (or
Integrated Data Store) from General Electric. This work was headed by one of the
early pioneers of database systems, Charles Bachmann. This development led to a
new type of database system known as the network DBMS, which had a profound
effect on the information systems of that generation. The network database was
developed partly to address the need to represent more complex data relationships
than could be modeled with hierarchical structures, and partly to impose a data-
base standard. To help establish such standards, the Conference on Data Systems
Languages (CODASYL), comprising representatives of the U.S. government and
the world of business and commerce, formed a List Processing Task Force in 1965,
subsequently renamed the Data Base Task Group (DBTG) in 1967. The terms of
reference for the DBTG were to define standard specifications for an environment
that would allow database creation and data manipulation. A draft report was issued
in 1969, and the first definitive report was issued in 1971. The DBTG proposal
identified three components:

- the network schema—the logical organization of the entire database as seen by
the DBA—which includes a definition of the database name, the type of each
record, and the components of each record type;

« the subschema—the part of the database as seen by the user or application program;
+ a data management language to define the data characteristics and the data
structure, and to manipulate the data.

For standardization, the DBTG specified three distinct languages:

« a schema DDL, which enables the DBA to define the schema;
+ a subschema DDL, which allows the application programs to define the parts of
the database they require;

- a DML, to manipulate the data.

Although the report was not formally adopted by the American National Standards
Institute (ANSI), a number of systems were subsequently developed following the DBTG
proposal. These systems are now known as CODASYL or DBTG systems. The
CODASYL and hierarchical approaches represented the first generation of DBMSs.

1.5 History of Database Management Systems

We look more closely at these systems on the Web site for this book (see the Preface
for the URL). However, these two models have some fundamental disadvantages:

+ complex programs have to be written to answer even simple queries based on
navigational record-oriented access;

« there is minimal data independence;

« there is no widely accepted theoretical foundation.

In 1970, E. F. Codd of the IBM Research Laboratory produced his highly influ-
ential paper on the relational data model (“A relational model of data for large
shared data banks,” Codd, 1970). This paper was very timely and addressed the
disadvantages of the former approaches. Many experimental relational DBMSs
were implemented thereafter, with the first commercial products appearing in the
late 1970s and early 1980s. Of particular note is the System R project at IBM’s San
José Research Laboratory in California, which was developed during the late 1970s
(Astrahan et al., 1976). This project was designed to prove the practicality of the
relational model by providing an implementation of its data structures and opera-
tions, and led to two major developments:

+ the development of a structured query language called SQL, which has since
become the standard language for relational DBMSs;

+ the production of various commercial relational DBMS products during the 1980s,
for example DB2 and SQL/DS from IBM and Oracle from Oracle Corporation.

Now there are several hundred relational DBMSs for both mainframe and PC envi-
ronments, though many are stretching the definition of the relational model. Other
examples of multi-user relational DBMSs are MySQL from Oracle Corporation,
Ingres from Actian Corporation, SQL Server from Microsoft, and Informix from
IBM. Examples of PC-based relational DBMSs are Office Access and Visual FoxPro
from Microsoft, Interbase from Embarcadero Technologies, and R:Base from
R:Base Technologies. Relational DBMSs are referred to as second-generation
DBMSs. We discuss the relational data model in Chapter 4.

The relational model is not without its failings; in particular, its limited modeling
capabilities. There has been much research since then attempting to address this
problem. In 1976, Chen presented the Entity—Relationship model, which is now a
widely accepted technique for database design and the basis for the methodology
presented in Chapters 16 and 17 of this book. In 1979, Codd himself attempted to
address some of the failings in his original work with an extended version of the
relational model called RM/T (1979) and subsequently RM/V2 (1990). The attempts
to provide a data model that represents the “real world” more closely have been
loosely classified as semantic data modeling.

In response to the increasing complexity of database applications, two “new”
systems have emerged: the object-oriented DBMS (OODBMS) and the object-
relational DBMS (ORDBMS). However, unlike previous models, the actual com-
position of these models is not clear. This evolution represents third-generation
DBMSs, which we discuss in Chapters 9 and 27-28.

The 1990s also saw the rise of the Internet, the three-tier client-server archi-
tecture, and the demand to allow corporate databases to be integrated with Web
applications. The late 1990s saw the development of XML (eXtensible Markup
Language), which has had a profound effect on many aspects of IT, including

73

74 Chapter |

TIMEFRAME

1960s (onwards)

Mid-1960s

1970

1970s

1976

1979

1987

1990s
1990s

Mid-1990s

1998

Figure 1.10

Introduction to Databases

database integration, graphical interfaces, embedded systems, distributed systems,
and database systems. We will discuss Web—database integration and XML in
Chapters 29-30.

Specialized DBMSs have also been created, such as data warehouses, which can
store data drawn from several data sources, possibly maintained by different oper-
ating units of an organization. Such systems provide comprehensive data analysis
facilities to allow strategic decisions to be made based on, for example, histori-
cal trends. All the major DBMS vendors provide data warehousing solutions. We
discuss data warehouses in Chapters 31-32. Another example is the enterprise
resource planning (ERP) system, an application layer built on top of a DBMS that
integrates all the business functions of an organization, such as manufacturing,
sales, finance, marketing, shipping, invoicing, and human resources. Popular ERP
systems are SAP R/3 from SAP and PeopleSoft from Oracle. Figure 1.10 provides a
summary of historical development of database systems.

DEVELOPMENT

File-based systems

Hierarchical and
network data
models

Relational model
proposed

Prototype RDBMSs
developed

ER model proposed

Commercial
RDBMSs appear

ISO SQL standard

OODBMS and
ORDBMSs appear

Data warehousing
systems appear

Web-database
integration

XML

COMMENTS

Precursor to the database system. Decentralized approach: each
department stored and controlled its own data.

Represents first-generation DBMSs. Main hierarchical system is IMS
from IBM and the main network system is IDMS/R from Computer
Associates. Lacked data independence and required complex
programs to be developed to process the data.

Publication of E. F. Codd's seminal paper “A relational model of
data for large shared data banks,” which addresses the weaknesses
of first-generation systems.

During this period, two main prototypes emerged: the Ingres

project at the University of California at Berkeley (started in 1970)
and the System R project at IBM's San José Research Laboratory in
California (started in 1974), which led to the development of SQL.

Publication of Chen's paper “The Entity-Relationship model—
Toward a unified view of data.” ER modeling becomes a significant
component in methodologies for database design.

Commercial RDBMSs like Oracle, Ingres, and DB2 appear. These
represent the second generation of DBMSs.

SQL is standardized by the ISO (Intemational Standards Organization).
There are subsequent releases of the standard in 1989, 1992 (SQL2),
1999 (SQL:1999), 2003 (SQL:2003), 2008 (SQL:2008), and

2011 (SQL:2011).

This period initially sees the emergence of OODBMSs and later
ORDBMSs (Oracle 8, with object features released in 1997).

This period also see releases from the major DBMS vendors of
data warehousing systems and thereafter data mining products.

The first Internet database applications appear. DBMS vendors and
third-party vendors recognize the significance of the Internet and
support web—database integration.

XML 1.0 ratified by the W3C. XML becomes integrated with
DBMS products and native XML databases are developed.

Historical development of database systems.

1.6 Advantages and Disadvantages of DBMSs

1.6 Advantages and Disadvantages of DBMSs

|

The database management system has promising potential advantages.
Unfortunately, there are also disadvantages. In this section, we examine these
advantages and disadvantages.

Advantages

The advantages of database management systems are listed in Table 1.2.

Control of data redundancy As we discussed in Section 1.2, traditional file-based
systems waste space by storing the same information in more than one file. For
example, in Figure 1.5, we stored similar data for properties for rent and clients
in both the Sales and Contracts Departments. In contrast, the database approach
attempts to eliminate the redundancy by integrating the files so that multiple
copies of the same data are not stored. However, the database approach does not
eliminate redundancy entirely, but controls the amount of redundancy inherent in
the database. Sometimes it is necessary to duplicate key data items to model rela-
tionships; at other times, it is desirable to duplicate some data items to improve
performance. The reasons for controlled duplication will become clearer as you
read the next few chapters.

Data consistency By eliminating or controlling redundancy, we reduce the risk of
inconsistencies occurring. If a data item is stored only once in the database, any update to
its value has to be performed only once and the new value is available immediately
to all users. If a data item is stored more than once and the system is aware of this,
the system can ensure that all copies of the item are kept consistent. Unfortunately,
many of today’s DBMSs do not automatically ensure this type of consistency.

More information from the same amount of data With the integration of the
operational data, it may be possible for the organization to derive additional
information from the same data. For example, in the file-based system illustrated
in Figure 1.5, the Contracts Department does not know who owns a leased prop-
erty. Similarly, the Sales Department has no knowledge of lease details. When we

TABLE 1.2 Advantages of DBMSs.

Control of data redundancy Economy of scale
Data consistency Balance of conflicting requirements
More information from the same Improved data accessibility and responsiveness

amount of data

Sharing of data Increased productivity
Improved data integrity Improved maintenance through data independence
Improved security Increased concurrency

Enforcement of standards Improved backup and recovery services

75

76

Chapter | Introduction to Databases

integrate these files, the Contracts Department has access to owner details and the
Sales Department has access to lease details. We may now be able to derive more
information from the same amount of data.

Sharing of data Typically, files are owned by the people or departments that use
them. On the other hand, the database belongs to the entire organization and can
be shared by all authorized users. In this way, more users share more of the data.
Furthermore, new applications can build on the existing data in the database and
add only data that is not currently stored, rather than having to define all data
requirements again. The new applications can also rely on the functions provided
by the DBMS, such as data definition and manipulation, and concurrency and
recovery control, rather than having to provide these functions themselves.

Improved data integrity Database integrity refers to the validity and consistency
of stored data. Integrity is usually expressed in terms of constraints, which are con-
sistency rules that the database is not permitted to violate. Constraints may apply to
data items within a single record or to relationships between records. For example,
an integrity constraint could state that a member of staff’s salary cannot be greater
than $40,000 or that the branch number contained in a staff record, representing
the branch where the member of staff works, must correspond to an existing branch
office. Again, integration allows the DBA to define integrity constraints, and the
DBMS to enforce them.

Improved security Database security is the protection of the database from unau-
thorized users. Without suitable security measures, integration makes the data more
vulnerable than file-based systems. However, integration allows the DBA to define
database security, and the DBMS to enforce it. This security may take the form of
user names and passwords to identify people authorized to use the database. The
access that an authorized user is allowed on the data may be restricted by the opera-
tion type (retrieval, insert, update, delete). For example, the DBA has access to all
the data in the database; a branch manager may have access to all data that relates
to his or her branch office; and a sales assistant may have access to all data relating
to properties but no access to sensitive data such as staff salary details.

Enforcement of standards Again, integration allows the DBA to define and
the DBMS to enforce the necessary standards. These may include departmental,
organizational, national, or international standards for such things as data formats
to facilitate exchange of data between systems, naming conventions, documentation
standards, update procedures, and access rules.

Economy of scale Combining all the organization’s operational data into one
database and creating a set of applications that work on this one source of data can
result in cost savings. In this case, the budget that would normally be allocated to
each department for the development and maintenance of its file-based system can
be combined, possibly resulting in a lower total cost, leading to an economy of scale.
The combined budget can be used to buy a system configuration that is more suited
to the organization’s needs. This may consist of one large, powerful computer or a
network of smaller computers.

1.6 Advantages and Disadvantages of DBMSs

Balance of conflicting requirements FEach user or department has needs that
may be in conflict with the needs of other users. Because the database is under the
control of the DBA, the DBA can make decisions about the design and operational
use of the database that provide the best use of resources for the organization as
a whole. These decisions will provide optimal performance for important applica-
tions, possibly at the expense of less-critical ones.

Improved data accessibility and responsiveness Again, as a result of integra-
tion, data that crosses departmental boundaries is directly accessible to the end-
users. This provides a system with potentially much more functionality that can, for
example, be used to provide better services to the end-user or the organization’s
clients. Many DBMSs provide query languages or report writers that allow users to
ask ad hoc questions and to obtain the required information almost immediately at
their terminal, without requiring a programmer to write some software to extract
this information from the database. For example, a branch manager could list all
flats with a monthly rent greater than £400 by entering the following SQL com-
mand at a terminal:

SELECT *
FROM PropertyForRent
WHERE type = ‘Flat’” AND rent > 400;

Increased productivity As mentioned previously, the DBMS provides many of
the standard functions that the programmer would normally have to write in a file-
based application. At a basic level, the DBMS provides all the low-level file-handling
routines that are typical in application programs. The provision of these functions
allows the programmer to concentrate on the specific functionality required by the
users without having to worry about low-level implementation details. Many DBMSs
also provide a fourth-generation environment, consisting of tools to simplify the
development of database applications. This results in increased programmer pro-
ductivity and reduced development time (with associated cost savings).

Improved maintenance through data independence In file-based systems, the
descriptions of the data and the logic for accessing the data are built into each
application program, making the programs dependent on the data. A change to
the structure of the data—such as making an address 41 characters instead of 40
characters, or a change to the way the data is stored on disk—can require sub-
stantial alterations to the programs that are affected by the change. In contrast,
a DBMS separates the data descriptions from the applications, thereby making
applications immune to changes in the data descriptions. This is known as data
independence and is discussed further in Section 2.1.5. The provision of data
independence simplifies database application maintenance.

Increased concurrency In some file-based systems, if two or more users are
allowed to access the same file simultaneously, it is possible that the accesses will
interfere with each other, resulting in loss of information or even loss of integrity.
Many DBMSs manage concurrent database access and ensure that such problems
cannot occur. We discuss concurrency control in Chapter 22.

77

78

Chapter | Introduction to Databases

Improved backup and recovery services Many file-based systems place the
responsibility on the user to provide measures to protect the data from failures
to the computer system or application program. This may involve performing
a nightly backup of the data. In the event of a failure during the next day, the
backup is restored and the work that has taken place since this backup is lost and
has to be re-entered. In contrast, modern DBMSs provide facilities to minimize the
amount of processing that is lost following a failure. We discuss database recovery
in Section 22.3.

Disadvantages

The disadvantages of the database approach are summarized in Table 1.3.

Complexity The provision of the functionality that we expect of a good DBMS
makes the DBMS an extremely complex piece of software. Database designers and
developers, data and database administrators, and end-users must understand this
functionality to take full advantage of it. Failure to understand the system can lead
to bad design decisions, which can have serious consequences for an organization.

Size The complexity and breadth of functionality makes the DBMS an extremely
large piece of software, occupying many megabytes of disk space and requiring
substantial amounts of memory to run efficiently.

Cost of DBMSs The cost of DBMSs varies significantly, depending on the envi-
ronment and functionality provided. For example, a single-user DBMS for a per-
sonal computer may only cost $100. However, a large mainframe multi-user DBMS
servicing hundreds of users can be extremely expensive, perhaps $100,000 or even
$1,000,000. There is also the recurrent annual maintenance cost, which is typically
a percentage of the list price.

Additional hardware costs The disk storage requirements for the DBMS and the
database may necessitate the purchase of additional storage space. Furthermore,
to achieve the required performance, it may be necessary to purchase a larger
machine, perhaps even a machine dedicated to running the DBMS. The procure-
ment of additional hardware results in further expenditure.

TABLE 1.3 Disadvantages of DBMSs.
Complexity
Size
Cost of DBMSs
Additional hardware costs
Cost of conversion
Performance

Greater impact of a failure

Chapter Summary 79

Cost of conversion In some situations, the cost of the DBMS and extra hardware
may be relatively small compared with the cost of converting existing applications
to run on the new DBMS and hardware. This cost also includes the cost of training
staft to use these new systems, and possibly the employment of specialist staff to
help with the conversion and running of the systems. This cost is one of the main
reasons why some organizations feel tied to their current systems and cannot switch
to more modern database technology. The term legacy system is sometimes used
to refer to an older, and usually inferior, system.

Performance ‘Typically, a file-based system is written for a specific application,
such as invoicing. As a result, performance is generally very good. However, the
DBMS is written to be more general, to cater for many applications rather than just
one. The result is that some applications may not run as fast as they used to.

Greater impact of a failure The centralization of resources increases the vulner-
ability of the system. Because all users and applications rely on the availability of the
DBMS, the failure of certain components can bring operations to a halt.

Chapter Summary

+ The Database Management System (DBMS) is now the underlying framework of the information system
and has fundamentally changed the way in which many organizations operate. The database system remains a
very active research area and many significant problems remain.

» The predecessor to the DBMS was the file-based system, which is a collection of application programs that
perform services for the end-users, usually the production of reports. Each program defines and manages its own
data. Although the file-based system was a great improvement over the manual filing system, it still has significant
problems, mainly the amount of data redundancy present and program—data dependence.

+ The database approach emerged to resolve the problems with the file-based approach. A database is a shared
collection of logically related data and a description of this data, designed to meet the information needs of an
organization. A DBMS s a software system that enables users to define, create, maintain, and control access
to the database. An application program is a computer program that interacts with the database by issuing
an appropriate request (typically a SQL statement) to the DBMS. The more inclusive term database system
is used to define a collection of application programs that interact with the database along with the DBMS and
database itself.

» All access to the database is through the DBMS. The DBMS provides a Data Definition Language (DDL),
which allows users to define the database, and a Data Manipulation Language (DML), which allows users
to insert, update, delete, and retrieve data from the database.

» The DBMS provides controlled access to the database. It provides security, integrity, concurrency and recovery
control, and a user-accessible catalog. It also provides a view mechanism to simplify the data that users have to
deal with.

+ The DBMS environment consists of hardware (the computer), software (the DBMS, operating system, and appli-
cations programs), data, procedures, and people. The people include data and database administrators, database
designers, application developers, and end-users.

+ The roots of the DBMS lie in file-based systems. The hierarchical and CODASYL systems represent the first
generation of DBMSs. The hierarchical model is typified by IMS (Information Management System) and the

80

Chapter | Introduction to Databases

network or CODASYL model by IDS (Integrated Data Store), both developed in the mid-1960s. The
relational model, proposed by E. F. Codd in 1970, represents the second generation of DBMSs. It has had a
fundamental effect on the DBMS community and there are now over one hundred relational DBMSs. The third
generation of DBMSs are represented by the Object-Relational DBMS and the Object-Oriented DBMS.

Some advantages of the database approach include control of data redundancy, data consistency, sharing of
data, and improved security and integrity. Some disadvantages include complexity, cost, reduced performance,
and higher impact of a failure.

Review Questions

1.1 List four government sectors in your country that use database systems..

1.2 Discuss each of the following terms:

(a) data

(b) database

(c) database management system
(d) database application program
(e) data independence

(fsecurity

(g) integrity

(h) views

1.3 Describe the role of database management systems (DBMS) in the database approach. Discuss why knowledge of

DBMS is important for database administrators.

1.4 Describe the main characteristics of the database approach and contrast it with the file-based approach.

1.5 Describe the five components of the DBMS environment and discuss how they relate to each other.

1.6 Discuss the roles of the following personnel in the database environment:

(a) data administrator

(b) database administrator

(c) logical database designer
(d) physical database designer
(e) application developer

(f) end-users

1.7 Discuss the three generations of DBMSs.

1.8 Why are views an important aspect of database management systems?

Exercises

1.9 Interview some users of database systems. Which DBMS features do they find most useful and why? Which DBMS

facilities do they find least useful and why? What do these users perceive to be the advantages and
disadvantages of the DBMS?

I.10 A database approach addresses several of the problems and challenges associated with the traditional file-based

approach. Using a DBMS to control how data is shared with different applications and users, through applications
such as views, has a number of advantages. However, the implementation of a database approach has its own

Exercises 81

challenges, such as expense. Discuss the various costs associated with the implementation of a
database approach.

/ﬁ% I.I'l Study the DreamHome case study presented in Section | |.4 and Appendix A.
NV

(@) In what ways would a DBMS help this organization?

(b) What do you think are the main objects that need to be represented in the database?
(c) What relationships do you think exist between these main objects?

(d) For each of the objects, what details do you think need to be stored in the database?
(e) What queries do you think are required?

I.12 Study the Wellmeadows Hospital case study presented in Appendix B.3.
(a) In what ways would a DBMS help this organization?
(b) What do you think are the main objects that need to be represented in the database?
(c) What relationships do you think exist between these main objects?
(d) For each of the objects, what details do you think need to be stored in the database?
(e) What queries do you think are required?

|\ I.13 Discuss what you consider to be the three most important advantages for the use of a DBMS for a company
ﬁﬁ like DreamHome and provide a justification for your selection. Discuss what you consider to be the three most

N important disadvantages for the use of a DBMS for a company like DreamHome and provide a justification for your
selection.

I.14 Organizations have a vital need for quality information. Discuss how the following database roles relate to each
other.
(a) Data Administrator
(b) Database Administrator
(c) Database Designer
(d) Application Developer
(e) End-Users

CHAPTER

Database Environment

Chapter Objectives
In this chapter you will learn:

» The purpose and origin of the three-level database architecture.

+ The contents of the external, conceptual, and internal levels.

» The purpose of the external/conceptual and the conceptual/internal mappings.

» The meaning of logical and physical data independence.

+ The distinction between a Data Definition Language (DDL) and a Data Manipulation
Language (DML).

A classification of data models.

+ The purpose and importance of conceptual modeling.

+ The typical functions and services that a DBMS should provide.

 The function and importance of the system catalog.

A major aim of a database system is to provide users with an abstract view of data,
hiding certain details of how data is stored and manipulated. Therefore, the start-
ing point for the design of a database must be an abstract and general description
of the information requirements of the organization that is to be represented in the
database. In this chapter, and throughout this book, we use the term “organization”
loosely to mean the whole organization or part of the organization. For example,
in the DreamHome case study, we may be interested in modeling:

+ the “real-world” entities Staff, PropertyforRent, PrivateOwner, and Client;

- attributes describing properties or qualities of each entity (for example, each
Staff entry has a name, position, and salary);

- relationships between these entities (for example, Staff Manages PropertyforRent).

Furthermore, because a database is a shared resource, each user may require a dif-
ferent view of the data held in the database. To satisty these needs, the architecture
of most commercial DBMSs available today is based to some extent on the so-called
ANSI-SPARC architecture. In this chapter, we discuss various architectural and
functional characteristics of DBMSs. 83

84

Chapter 2 Database Environment

&

v

Structure of this Chapter In Section 2.1, we examine the three-level
ANSI-SPARC architecture and its associated benefits. In Section 2.2, we consider
the types of language that are used by DBMSs, and in Section 2.3, we introduce
the concepts of data models and conceptual modeling, which we expand on in
later parts of the book. In Section 2.4, we discuss the functions that we would
expect a DBMS to provide. The examples in this chapter are drawn from the
DreamHome case study, which we discuss more fully in Section 11.4 and
Appendix A.

Much of the material in this chapter provides important background infor-
mation on DBMSs. However, the reader who is new to the area of database
systems may find some of the material difficult to comprehend fully on first
reading. Do not be too concerned about this, but be prepared to revisit parts of
this chapter at a later date when you have read subsequent chapters of the book.

2. | The Three-Level ANSI-SPARC Architecture

[[

An early proposal for a standard terminology and general architecture for database
systems was produced in 1971 by the DBTG appointed by CODASYL in 1971.
The DBTG recognized the need for a two-level approach with a system view called
the schema and user views called subschemas. The American National Standards
Institute (ANSI) Standards Planning and Requirements Committee (SPARC),
or ANSI/X3/SPARC, produced a similar terminology and architecture in 1975
(ANSI, 1975). The ANSI-SPARC architecture recognized the need for a three-level
approach with a system catalog. These proposals reflected those published by the
IBM user organizations Guide and Share some years previously, and concentrated
on the need for an implementation-independent layer to isolate programs from
underlying representational issues (Guide/Share, 1970). Although the ANSI-SPARC
model did not become a standard, it still provides a basis for understanding some
of the functionality of a DBMS.

For our purposes, the fundamental point of these and later reports is the iden-
tification of three levels of abstraction, that is, three distinct levels at which data
items can be described. The levels form a three-level architecture comprising an
external, a conceptual, and an internal level, as depicted in Figure 2.1. The way
users perceive the data is called the external level. The way the DBMS and the
operating system perceive the data is the internal level, where the data is actually
stored using the data structures and file organizations described in Appendix F.
The conceptual level provides both the mapping and the desired independence
between the external and internal levels.

The objective of the three-level architecture is to separate each user’s view of the
database from the way the database is physically represented. There are several
reasons why this separation is desirable:

« Each user should be able to access the same data, but have a different customized
view of the data. Each user should be able to change the way he or she views the
data, and this change should not affect other users.

2.1 The Three-Level ANSI-SPARC Architecture 85

User 1 User 2 User n
External |] d
level View 1 View 2 View n
Conceptual Conceptual
level schema
Internal Internal
level schema
Physical data
organization

Database

+ Users should not have to deal directly with physical database storage details, such
as indexing or hashing (see Appendix F). In other words, a user’s interaction with
the database should be independent of storage considerations.

+ The DBA should be able to change the database storage structures without affect-
ing the users’ views.

+ The internal structure of the database should be unaffected by changes to the
physical aspects of storage, such as the changeover to a new storage device.

+ The DBA should be able to change the conceptual structure of the database with-
out affecting all users.

2.1.1 External Level

External The users’ view of the database. This level describes that part of the
level database that is relevant to each user.

The external level consists of a number of different external views of the database.
Each user has a view of the “real world” represented in a form that is familiar for
that user. The external view includes only those entities, attributes, and relation-
ships in the “real world” that the user is interested in. Other entities, attributes, or
relationships that are not of interest may be represented in the database, but the
user will be unaware of them.

In addition, different views may have difterent representations of the same
data. For example, one user may view dates in the form (day, month, year), while
another may view dates as (year, month, day). Some views might include derived
or calculated data: data not actually stored in the database as such, but created
when needed. For example, in the DreamHome case study, we may wish to view the
age of a member of staff. However, it is unlikely that ages would be stored, as this
data would have to be updated daily. Instead, the member of staft’s date of birth
would be stored and age would be calculated by the DBMS when it is referenced.

Figure 2.1

The ANSI-
SPARC three-
level architecture.

86

Chapter 2 Database Environment

Views may even include data combined or derived from several entities. We discuss
views in more detail in Sections 4.4 and 7.4.

2.1.2 Conceptual Level

Conceptual The community view of the database. This level describes what data
level is stored in the database and the relationships among the data.

The middle level in the three-level architecture is the conceptual level. This level
contains the logical structure of the entire database as seen by the DBA. It is a com-
plete view of the data requirements of the organization that is independent of any
storage considerations. The conceptual level represents:

- all entities, their attributes, and their relationships;
« the constraints on the data;
« semantic information about the data;

- security and integrity information.

The conceptual level supports each external view, in that any data available to a
user must be contained in, or derivable from, the conceptual level. However, this
level must not contain any storage-dependent details. For instance, the descrip-
tion of an entity should contain only data types of attributes (for example,
integer, real, character) and their length (such as the maximum number of digits
or characters), but not any storage considerations, such as the number of bytes
occupied.

2.1.3 Internal Level

Internal The physical representation of the database on the computer. This
level level describes how the data is stored in the database.

The internal level covers the physical implementation of the database to achieve
optimal runtime performance and storage space utilization. It covers the data
structures and file organizations used to store data on storage devices. It inter-
faces with the operating system access methods (file management techniques for
storing and retrieving data records) to place the data on the storage devices, build
the indexes, retrieve the data, and so on. The internal level is concerned with such
things as:

- storage space allocation for data and indexes;

« record descriptions for storage (with stored sizes for data items);

« record placement;

- data compression and data encryption techniques.

Below the internal level there is a physical level that may be managed by the
operating system under the direction of the DBMS. However, the functions of
the DBMS and the operating system at the physical level are not clear-cut and
vary from system to system. Some DBMSs take advantage of many of the operating

2.1 The Three-Level ANSI-SPARC Architecture

system access methods, and others use only the most basic ones and create their
own file organizations. The physical level below the DBMS consists of items that
only the operating system knows, such as exactly how the sequencing is imple-
mented and whether the fields of internal records are stored as contiguous bytes

on the disk.

2.1.4 Schemas, Mappings, and Instances

The overall description of the database is called the database schema. There are
three different types of schema in the database and these are defined according
to the levels of abstraction of the three-level architecture illustrated in Figure 2.1.
At the highest level, we have multiple external schemas (also called subschemas)
that correspond to different views of the data. At the conceptual level, we have the
conceptual schema, which describes all the entities, attributes, and relationships
together with integrity constraints. At the lowest level of abstraction we have the
internal schema, which is a complete description of the internal model, containing
the definitions of stored records, the methods of representation, the data fields,
and the indexes and storage structures used. There is only one conceptual schema
and one internal schema per database.

The DBMS is responsible for mapping between these three types of schema.
It must also check the schemas for consistency; in other words, the DBMS must
confirm that each external schema is derivable from the conceptual schema,
and it must use the information in the conceptual schema to map between each
external schema and the internal schema. The conceptual schema is related to
the internal schema through a conceptual/internal mapping. This mapping
enables the DBMS to find the actual record or combination of records in physi-
cal storage that constitute a logical record in the conceptual schema, together
with any constraints to be enforced on the operations for that logical record.
It also allows any differences in entity names, attribute names, attribute order,
data types, and so on to be resolved. Finally, each external schema is related to
the conceptual schema by the external/conceptual mapping. This mapping
enables the DBMS to map names in the user’s view to the relevant part of the
conceptual schema.

An example of the different levels is shown in Figure 2.2. Two different external
views of staff details exist: one consisting of a staft number (sNo), first name (fName),
last name (IName), age, and salary; a second consisting of a staff number (staffNo),
last name (IName), and the number of the branch the member of staff works at
(branchNo). These external views are merged into one conceptual view. In this
merging process, the major difference is that the age field has been changed into
a date of birth field, DOB. The DBMS maintains the external/conceptual mapping;
for example, it maps the sNo field of the first external view to the staffNo field of
the conceptual record. The conceptual level is then mapped to the internal level,
which contains a physical description of the structure for the conceptual record. At
this level, we see a definition of the structure in a high-level language. The structure
contains a pointer, next, which allows the list of staft records to be physically linked
together to form a chain. Note that the order of fields at the internal level is differ-
ent from that at the conceptual level. Again, the DBMS maintains the conceptual/
internal mapping.

87

88 Chapter 2 Database Environment

External view 1 External view 2
sNo fName IName age salary staffNo IName | branchNo
Conceptual level staffNo fName IName DOB salary | branchNo

struct STAFF {
int staffNo;
int branchNo;
char fName [15];
char IName [15];

Internal level struct date dateOfBirth;
float salary;
struct STAFF *next; /* pointer to next Staff record */
iﬁdex staffNo; index branchNo; /* define indexes for staff */

Figure 2.2 Differences between the three levels.

It is important to distinguish between the description of the database and the
database itself. The description of the database is the database schema. The
schema is specified during the database design process and is not expected to
change frequently. However, the actual data in the database may change frequently;
for example, it changes every time we insert details of a new member of staff or a
new property. The data in the database at any particular point in time is called a
database instance. Therefore, many database instances can correspond to the same
database schema. The schema is sometimes called the intension of the database; an
instance is called an extension (or state) of the database.

2.1.5 Data Independence

A major objective for the three-level architecture is to provide data independence,
which means that upper levels are unaffected by changes to lower levels. There are
two kinds of data independence: logical and physical.

Logical data The immunity of the external schemas to changes in the
independence conceptual schema.

Changes to the conceptual schema, such as the addition or removal of new entities,
attributes, or relationships, should be possible without having to change existing
external schemas or having to rewrite application programs. Clearly, the users for
whom the changes have been made need to be aware of them, but what is important
is that other users should not be.

Physical data The immunity of the conceptual schema to changes in the
independence internal schema.

2.2 Database Languages

External External External
schema schema schema
External/conceptual Logical data independence
mapping
Conceptual
schema
Conceptual/internal Physical data independence
mapping
Internal
schema

Changes to the internal schema, such as using different file organizations or stor-
age structures, using different storage devices, modifying indexes or hashing algo-
rithms, should be possible without having to change the conceptual or external
schemas. From the users’ point of view, the only effect that may be noticed is a
change in performance. In fact, deterioration in performance is the most common
reason for internal schema changes. Figure 2.3 illustrates where each type of data
independence occurs in relation to the three-level architecture.

The two-stage mapping in the ANSI-SPARC architecture may be inefficient, but
it also provides greater data independence. However, for more efficient mapping,
the ANSI-SPARC model allows the direct mapping of external schemas onto
the internal schema, thus by-passing the conceptual schema. This mapping of
course reduces data independence, so that every time the internal schema
changes, the external schema and any dependent application programs may also
have to change.

= 2.2 Database Languages

A data sublanguage consists of two parts: a Data Definition Language (DDL) and
a Data Manipulation Language (DML). The DDL is used to specify the database
schema and the DML is used to both read and update the database. These lan-
guages are called data sublanguages because they do not include constructs for
all computing needs, such as conditional or iterative statements, which are pro-
vided by the high-level programming languages. Many DBMSs have a facility
tor embedding the sublanguage in a high-level programming language such as
COBOL, Fortran, Pascal, Ada, C, C++, C#, Java, or Visual Basic. In this case,
the high-level language is sometimes referred to as the host language. To compile
the embedded file, the commands in the data sublanguage are first removed
from the host-language program and replaced by function calls. The preprocessed
file is then compiled, placed in an object module, linked with a DBMS-specific
library containing the replaced functions, and executed when required. Most data
sublanguages also provide nonembedded or interactive commands that can be input
directly from a terminal.

Figure 2.3
Data indepen-
dence and the
ANSI-SPARC
three-level
architecture.

89

90

Chapter 2 Database Environment

2.2.1 The Data Definition Language (DDL)

Alanguage that allows the DBA or user to describe and name the entities,
DDL attributes, and relationships required for the application, together with
any associated integrity and security constraints.

The database schema is specified by a set of definitions expressed by means of a
special language called a Data Definition Language. The DDL is used to define a
schema or to modify an existing one. It cannot be used to manipulate data.

The result of the compilation of the DDL statements is a set of tables stored
in special files collectively called the system catalog. The system catalog inte-
grates the metadata, which is data that describes the objects in the database and
makes it easier for those objects to be accessed or manipulated. The metadata
contains definitions of records, data items, and other objects that are of interest
to users or are required by the DBMS. The DBMS normally consults the sys-
tem catalog before the actual data is accessed in the database. The terms data
dictionary and data directory are also used to describe the system catalog,
although the term “data dictionary” usually refers to a more general software
system than a catalog for a DBMS. We discuss the system catalog further in
Section 2.4.

At a theoretical level, we could identify different DDLs for each schema in the
three-level architecture: namely, a DDL for the external schemas, a DDL for the
conceptual schema, and a DDL for the internal schema. However, in practice, there
is one comprehensive DDL that allows specification of at least the external and
conceptual schemas.

2.2.2 The Data Manipulation Language (DML)

DML A lar.lguagfz that provjdes a set of operation's to support the basic data
manipulation operations on the data held in the database.

Data manipulation operations usually include the following:

- insertion of new data into the database;

- modification of data stored in the database;
- retrieval of data contained in the database;
+ deletion of data from the database.

Therefore, one of the main functions of the DBMS is to support a Data
Manipulation Language in which the user can construct statements that will cause
such data manipulation to occur. Data manipulation applies to the external, con-
ceptual, and internal levels. However, at the internal level we must define rather
complex low-level procedures that allow efficient data access. In contrast, at higher
levels, emphasis is placed on ease of use and effort is directed at providing efficient
user interaction with the system.

The part of a DML that involves data retrieval is called a query language. A
query language can be defined as a high-level special-purpose language used to
satisfy diverse requests for the retrieval of data held in the database. The term

2.2 Database Languages

“query” is therefore reserved to denote a retrieval statement expressed in a query
language. The terms “query language” and “DML” are commonly used inter-
changeably, although this is technically incorrect.

DMLs are distinguished by their underlying retrieval constructs. We can dis-
tinguish between two types of DML: procedural and nonprocedural. The prime
difference between these two data manipulation languages is that procedural
languages specify how the output of a DML statement is to be obtained, while
nonprocedural DMLs describe only what output is to be obtained. Typically, pro-
cedural languages treat records individually, whereas nonprocedural languages
operate on sets of records.

Procedural DMLs

Procedural A language that allows the user to tell the system what data is
DML needed and exactly how to retrieve the data.

With a procedural DML, the user, or more often the programmer, specifies what
data is needed and how to obtain it. This means that the user must express all
the data access operations that are to be used by calling appropriate procedures
to obtain the information required. Typically, such a procedural DML retrieves a
record, processes it and, based on the results obtained by this processing, retrieves
another record that would be processed similarly, and so on. This process of
retrievals continues until the data requested from the retrieval has been gathered.
Typically, procedural DMLs are embedded in a high-level programming lan-
guage that contains constructs to facilitate iteration and handle navigational logic.
Network and hierarchical DMLs are normally procedural (see Section 2.3).

Nonprocedural DMLs

Nonprocedural A language that allows the user to state what data is needed
DML rather than how it is to be retrieved.

Nonprocedural DMLs allow the required data to be specified in a single retrieval
or update statement. With nonprocedural DMLs, the user specifies what data
is required without specifying how it is to be obtained. The DBMS translates a
DML statement into one or more procedures that manipulate the required sets of
records, which frees the user from having to know how data structures are internally
implemented and what algorithms are required to retrieve and possibly transform
the data, thus providing users with a considerable degree of data independence.
Nonprocedural languages are also called declarative languages. Relational DBMSs
usually include some form of nonprocedural language for data manipulation, typi-
cally SQL or QBE (Query-By-Example). Nonprocedural DMLs are normally easier
to learn and use than procedural DMLs, as less work is done by the user and more
by the DBMS. We examine SQL in detail in Chapters 6-9 and Appendix I, and
QBE in Appendix M.

91

92

Chapter 2 Database Environment

2.2.3 Fourth-Generation Languages (4GLs)

There is no consensus about what constitutes a fourth-generation language; in
essence, it is a shorthand programming language. An operation that requires
hundreds of lines of code in a third-generation language (3GL), such as COBOL,
generally requires significantly fewer lines in a 4GL.

Compared with a 3GL, which is procedural, a 4GL is nonprocedural: the user
defines what is to be done, not how. A 4GL is expected to rely largely on much
higher-level components known as fourth-generation tools. The user does not
define the steps that a program needs to perform a task, but instead defines
parameters for the tools that use them to generate an application program. It
is claimed that 4GLs can improve productivity by a factor of ten, at the cost of
limiting the types of problem that can be tackled. Fourth-generation languages
encompass:

- presentation languages, such as query languages and report generators;
- speciality languages, such as spreadsheets and database languages;

- application generators that define, insert, update, and retrieve data from the
database to build applications;

- very high-level languages that are used to generate application code.

SQL and QBE, mentioned previously, are examples of 4GLs. We now briefly discuss
some of the other types of 4GL.

Forms generators

A forms generator is an interactive facility for rapidly creating data input and dis-
play layouts for screen forms. The forms generator allows the user to define what
the screen is to look like, what information is to be displayed, and where on the
screen it is to be displayed. It may also allow the definition of colors for screen ele-
ments and other characteristics, such as bold, underline, blinking, reverse video,
and so on. The better forms generators allow the creation of derived attributes,
perhaps using arithmetic operators or aggregates, and the specification of valida-
tion checks for data input.

Report generators

A report generator is a facility for creating reports from data stored in the database.
It is similar to a query language in that it allows the user to ask questions of the
database and retrieve information from it for a report. However, in the case of a
report generator, we have much greater control over what the output looks like. We
can let the report generator automatically determine how the output should look
or we can create our own customized output reports using special report-generator
command instructions.

There are two main types of report generator: language-oriented and visu-
ally oriented. In the first case, we enter a command in a sublanguage to define
what data is to be included in the report and how the report is to be laid out. In
the second case, we use a facility similar to a forms generator to define the same
information.

2.3 Data Models and Conceptual Modeling

Graphics generators

A graphics generator is a facility to retrieve data from the database and display the
data as a graph showing trends and relationships in the data. Typically, it allows the
user to create bar charts, pie charts, line charts, scatter charts, and so on.

Application generators

An application generator is a facility for producing a program that interfaces with
the database. The use of an application generator can reduce the time it takes to
design an entire software application. Application generators typically consist of
prewritten modules that comprise fundamental functions that most programs use.
These modules, usually written in a high-level language, constitute a library of func-
tions to choose from. The user specifies what the program is supposed to do; the
application generator determines iow to perform the tasks.

2.3 Data Models and Conceptual Modeling

| S

We mentioned earlier that a schema is written using a DDL. In fact, it is written
in the DDL of a particular DBMS. Unfortunately, this type of language is too low
level to describe the data requirements of an organization in a way that is readily
understandable by a variety of users. What we require is a higher-level description
of the schema: that is, a data model.

An integrated collection of concepts for describing and manipulat-
Data model ing data, relationships between data, and constraints on the data in
an organization.

A model is a representation of real-world objects and events, and their associa-
tions. It is an abstraction that concentrates on the essential, inherent aspects of an
organization and ignores the accidental properties. A data model represents the
organization itself. It should provide the basic concepts and notations that will allow
database designers and end-users to communicate unambiguously and accurately
their understanding of the organizational data. A data model can be thought of as
comprising three components:

(1) a structural part, consisting of a set of rules according to which databases can
be constructed;

(2) a manipulative part, defining the types of operation that are allowed on the
data (this includes the operations that are used for updating or retrieving data
from the database and for changing the structure of the database);

(3) a set of integrity constraints, which ensures that the data is accurate.

The purpose of a data model is to represent data and to make the data understand-
able. If it does this, then it can be easily used to design a database. To reflect the
ANSI-SPARC architecture introduced in Section 2.1, we can identify three related
data models:

(1) an external data model, to represent each user’s view of the organization, some-
times called the Universe of Discourse (UoD);

93

94

Chapter 2 Database Environment

(2) a conceptual data model, to represent the logical (or community) view that is
DBMS-independent;

(3) an internal data model, to represent the conceptual schema in such a way that
it can be understood by the DBMS.

There have been many data models proposed in the literature. They fall into three
broad categories: object-based, record-based, and physical data models. The first
two are used to describe data at the conceptual and external levels, the third is used
to describe data at the internal level.

2.3.1 Object-Based Data Models

Object-based data models use concepts such as entities, attributes, and relation-
ships. An entity is a distinct object (a person, place, thing, concept, event) in the
organization that is to be represented in the database. An attribute is a property
that describes some aspect of the object that we wish to record, and a relationship
is an association between entities. Some of the more common types of object-based
data model are:

- Entity-Relationship (ER)
+ Semantic
+ Functional

+ Object-oriented

The ER model has emerged as one of the main techniques for database design
and forms the basis for the database design methodology used in this book. The
object-oriented data model extends the definition of an entity to include not only
the attributes that describe the state of the object but also the actions that are asso-
ciated with the object, that is, its behavior. The object is said to encapsulate both
state and behavior. We look at the ER model in depth in Chapters 12 and 13 and
the object-oriented model in Chapters 27-28. We also examine the functional data
model in Section 27.5.2.

2.3.2 Record-Based Data Models

In a record-based model, the database consists of a number of fixed-format records,
possibly of differing types. Each record type defines a fixed number of fields, typi-
cally of a fixed length. There are three principal types of record-based logical data
model: the relational data model, the network data model, and the hierarchical
data model. The hierarchical and network data models were developed almost a
decade before the relational data model, so their links to traditional file processing
concepts are more evident.

Relational data model

The relational data model is based on the concept of mathematical relations. In the
relational model, data and relationships are represented as tables, each of which
has a number of columns with a unique name. Figure 2.4 is a sample instance of a
relational schema for part of the DreamHome case study, showing branch and staff

2.3 Data Models and Conceptual Modeling 95

Branch
branchNo | street city postCode

B005 22 Deer Rd | London |SWI14EH

B007 16 Argyll St | Aberdeen | AB2 3SU

B003 163 Main St | Glasgow | G11 9QX

B004 32 Manse Rd | Bristol BS99 INZ

B002 56 Clover Dr | London | NW10 6EU

Staff

staffNo [fName | IName | position |sex [DOB salary | branchNo
SL21 John White | Manager |M | 1-Oct-45 30000 | B0O5
SG37 Ann Beech | Assistant |F 10-Nov-60 | 12000 | B003
SG14 David | Ford Supervisor [M | 24-Mar-58 | 18000 | B003
SA9 Mary |Howe |[Assistant |F 19-Feb-70 [9000 | BOO7
SG5 Susan | Brand | Manager |F 3-Jun-40 | 24000 | B003
SL41 Julie Lee Assistant F 13-Jun-65 9000 | BOO5

details. For example, it shows that employee John White is a manager with a salary
of £30,000, who works at branch (branchNo) B005, which, from the first table, is at
22 Deer Rd in London. It is important to note that there is a relationship between
Staff and Branch: a branch office has staff. However, there is no explicit link between
these two tables; it is only by knowing that the attribute branchNo in the Staff rela-
tion is the same as the branchNo of the Branch relation that we can establish that a
relationship exists.

Note that the relational data model requires only that the database be perceived
by the user as tables. However, this perception applies only to the logical structure
of the database, that is, the external and conceptual levels of the ANSI-SPARC
architecture. It does not apply to the physical structure of the database, which can
be implemented using a variety of storage structures. We discuss the relational data
model in Chapter 4.

Network data model

In the network model, data is represented as collections of records, and relation-
ships are represented by sets. Compared with the relational model, relationships
are explicitly modeled by the sets, which become pointers in the implementation.
The records are organized as generalized graph structures with records appearing
as nodes (also called segments) and sets as edges in the graph. Figure 2.5 illustrates
an instance of a network schema for the same data set presented in Figure 2.4.
The most popular network DBMS is Computer Associates’ IDMS/R. We discuss the
network data model in more detail on the Web site for this book (see the Preface
for the URL).

Hierarchical data model

The hierarchical model is a restricted type of network model. Again, data is rep-
resented as collections of records and relationships are represented by sets.

Figure 2.4

A sample
instance of a
relational schema.

96 | Chapter 2 Database Environment

| Bo05 | 22DeerRd | London

st41 | Julie [Lee | ...

Assistant | 9000 |

| B0O7 | 16 Argyll St | Aberdeen

st21 | John [white [... | Manager | 30000 |

Assistant | 9000 |

| Bo04 | 32Manse Rd | Bristol

SG37 | Ann | Beech |

Assistant | 12000 |

| B002 | 56 Clover Dr | London

SG14 | David | Ford | ...

Supervisor | 18000 |

| B003 | 163 Main St | Glasgow \ SA9 | Mary | Howe | ...
|
|

SG5 | Susan | Brand |

Manager | 24000 |

Figure 2.5 A sample instance of a network schema.

However, the hierarchical model allows a node to have only one parent. A hierar-
chical model can be represented as a tree graph, with records appearing as nodes
(also called segments) and sets as edges. Figure 2.6 illustrates an instance of a
hierarchical schema for the same data set presented in Figure 2.4. The main hier-
archical DBMS is IBM’s IMS, although IMS also provides nonhierarchial features.
We discuss the hierarchical data model in more detail on the Web site for this book
(see the Preface for the URL).

Record-based (logical) data models are used to specify the overall structure of
the database and a higher-level description of the implementation. Their main
drawback is that they do not provide adequate facilities for explicitly specifying
constraints on the data, whereas the object-based data models lack the means of
logical structure specification but provide more semantic substance by allowing the
user to specify constraints on the data.

I

[Boo4 | ... | Bristol | [Boo2 | ... | London |
[Boos | ... | London | [B003 | ... | Glasgow | [B007 [... | Aberdeen
[sta1 [yuie [Lee | ... [Assistant [9000 |
[sL21 [John | white | ... | Manager | 30000 |
[5G37 [Ann | Beech | ... | Assistant | 12000 |
| sG14 | David | Ford | ... | Supervisor | 18000 |
[sG5 | susan | Brand | ... | Manager | 24000 |
[sA9 | Mary | Howe | ... | Assistant | 9000 |

Figure 2.6 A sample instance of a hierarchical schema.

2.4 Functions of a DBMS

The majority of modern commercial systems are based on the relational para-
digm, whereas the early database systems were based on either the network or
hierarchical data models. The latter two models require the user to have knowledge
of the physical database being accessed, whereas the former provides a substan-
tial amount of data independence. Hence, relational systems adopt a declarative
approach to database processing (that is, they specify what data is to be retrieved),
but network and hierarchical systems adopt a navigational approach (that is, they
specify how the data is to be retrieved).

2.3.3 Physical Data Models

Physical data models describe how data is stored in the computer, representing
information such as record structures, record orderings, and access paths. There
are not as many physical data models as logical data models; the most common
ones are the unifying model and the frame memory.

2.3.4 Conceptual Modeling

From an examination of the three-level architecture, we see that the conceptual
schema is the heart of the database. It supports all the external views and is, in
turn, supported by the internal schema. However, the internal schema is merely
the physical implementation of the conceptual schema. The conceptual schema
should be a complete and accurate representation of the data requirements of the
enterprise.” If this is not the case, some information about the enterprise will be
missing or incorrectly represented and we will have difficulty fully implementing
one or more of the external views.

Conceptual modeling or conceptual database design is the process of construct-
ing a model of the information use in an enterprise that is independent of imple-
mentation details, such as the target DBMS, application programs, programming
languages, or any other physical considerations. This model is called a conceptual
data model. Conceptual models are also referred to as “logical models” in the
literature. However, in this book we make a distinction between conceptual and
logical data models. The conceptual model is independent of all implementation
details, whereas the logical model assumes knowledge of the underlying data model
of the target DBMS. In Chapters 16 and 17 we present a methodology for database
design that begins by producing a conceptual data model, which is then refined into
a logical model based on the relational data model. We discuss database design in
more detail in Section 10.6.

2.4 Functions of a DBMS

| S

In this section, we look at the types of function and service that we would expect a
DBMS to provide. Codd (1982) lists eight services that should be provided by any
tull-scale DBMS, and we have added two more that might reasonably be expected
to be available.

"When we are discussing the organization in the context of database design we normally refer to
the business or organization as the enterprise.

97

98 Chapter 2 Database Environment

(1) Data storage, retrieval, and update

A DBMS must furnish users with the ability to store, retrieve, and update data in the
database.

This is the fundamental function of a DBMS. From the discussion in Section 2.1,
clearly in providing this functionality, clearly the DBMS should hide the internal
physical implementation details (such as file organization and storage structures)
from the user.

(2) A user-accessible catalog

A DBMS must furnish a catalog in which descriptions of data items are stored and
which is accessible to users.

A key feature of the ANSI-SPARC architecture is the recognition of an integrated
system catalog to hold data about the schemas, users, applications, and so on. The
catalog is expected to be accessible to users as well as to the DBMS. A system catalog,
or data dictionary, is a repository of information describing the data in the database;
it is the “data about the data” or the metadata. The amount of information and the
way the information is used vary with the DBMS. Typically, the system catalog stores:

+ names, types, and sizes of data items;

- names of relationships;

- integrity constraints on the data;

« names of authorized users who have access to the data;

- the data items that each user can access and the types of access allowed; for exam-
ple, insert, update, delete, or read access;

- external, conceptual, and internal schemas and the mappings between the sche-
mas, as described in 2.1.4;

- usage statistics, such as the frequencies of transactions and counts on the number
of accesses made to objects in the database.

The DBMS system catalog is one of the fundamental components of the system.
Many of the software components that we describe in the next section rely on the
system catalog for information. Some benefits of a system catalog are:

« Information about data can be collected and stored centrally. This helps to main-
tain control over the data as a resource.

+ The meaning of data can be defined, which will help other users understand the
purpose of the data.

+ Communication is simplified, because exact meanings are stored. The system
catalog may also identify the user or users who own or access the data.

+ Redundancy and inconsistencies can be identified more easily as the data is cen-
tralized.

- Changes to the database can be recorded.

2.4 Functions of a DBMS

+ The impact of a change can be determined before it is implemented because the
system catalog records each data item, all its relationships, and all its users.

+ Security can be enforced.
« Integrity can be ensured.
+ Audit information can be provided.

Some authors make a distinction between system catalog and data directory, in
that a data directory holds information relating to where data is stored and how it
is stored. The ISO has adopted a standard for data dictionaries called Information
Resource Dictionary System (IRDS) (ISO 1990, 1993). IRDS is a software tool that
can be used to control and document an organization’s information sources. It pro-
vides a definition for the tables that comprise the data dictionary and the operations
that can be used to access these tables. We use the term “system catalog” in this book to
refer to all repository information. We discuss other types of statistical information
stored in the system catalog to assist with query optimization in Section 23.4.1.

(3) Transaction support

A DBMS must furnish a mechanism that will ensure either that all the updates
corresponding to a given transaction are made or that none of them is made.

A transaction is a series of actions, carried out by a single user or application pro-
gram, which accesses or changes the contents of the database. For example, some
simple transactions for the DreamHome case study might be to add a new member of
staft to the database, to update the salary of a member of staff, or to delete a prop-
erty from the register. A more complicated example might be to delete a member
of staff from the database and to reassign the properties that he or she managed to
another member of staff. In this case, there is more than one change to be made to
the database. If the transaction fails during execution, perhaps because of a com-
puter crash, the database will be in an inconsistent state: some changes will have
been made and others will not. Consequently, the changes that have been made
will have to be undone to return the database to a consistent state again. We discuss
transaction support in Section 22.1.

(4) Concurrency control services

A DBMS must furnish a mechanism to ensure that the database is updated correctly
when multiple users are updating the database concurrently.

One major objective in using a DBMS is to enable many users to access shared data
concurrently. Concurrent access is relatively easy if all users are only reading data,
as there is no way that they can interfere with one another. However, when two
or more users are accessing the database simultaneously and at least one of them
is updating data, there may be interference that can result in inconsistencies. For
example, consider two transactions T, and Ty, which are executing concurrently, as
illustrated in Figure 2.7.

D

vV

99

100

Chapter 2 Database Environment

Time T, T, baly
t read(baly) 100
ty read(baly) bal, = baly + 100 100
t3 baly = bal, - 10 write(baly) 200
ty write(baly) 90
ts 90

Figure 2.7 The lost update problem.

T, is withdrawing £10 from an account (with balance bal,) and T, is deposit-
ing £100 into the same account. If these transactions were executed serially, one
after the other with no interleaving of operations, the final balance would be £190,
regardless of which was performed first. However, in this example transactions T
and T, start at nearly the same time and both read the balance as £100. T, then
increases bal, by £100 to £200 and stores the update in the database. Meanwhile,
transaction T} decrements its copy of bal, by £10 to £90 and stores this value in the
database, overwriting the previous update and thereby “losing” £100.

The DBMS must ensure that when multiple users are accessing the database,
interference cannot occur. We discuss this issue fully in Section 22.2.

(5) Recovery services

A DBMS must furnish a mechanism for recovering the database in the event that the
database is damaged in any way.

When discussing transaction support, we mentioned that if the transaction
fails, then the database has to be returned to a consistent state. This failure may
be the result of a system crash, media failure, a hardware or software error
causing the DBMS to stop, or it may be the result of the user detecting an error
during the transaction and aborting the transaction before it completes. In all
these cases, the DBMS must provide a mechanism to restore the database to a
consistent state. We discuss database recovery in Section 22.3.

(6) Authorization services

A DBMS must furnish a mechanism to ensure that only authorized users can access
the database.

It is not difficult to envision instances where we would want to prevent some of the
data stored in the database from being seen by all users. For example, we may want
only branch managers to see salary-related information for staff and to prevent all
other users from seeing this data. Additionally, we may want to protect the database
from unauthorized access. The term “security” refers to the protection of the data-
base against unauthorized access, either intentional or accidental. We expect the
DBMS to provide mechanisms to ensure that the data is secure. We discuss security
in Chapter 20.

2.4 Functions of a DBMS

(7) Support for data communication

A DBMS must be capable of integrating with communication software.

Most users access the database from workstations. Sometimes these worksta-
tions are connected directly to the computer hosting the DBMS. In other cases,
the workstations are at remote locations and communicate with the computer
hosting the DBMS over a network. In either case, the DBMS receives requests as
communications messages and responds in a similar way. All such transmissions
are handled by a data communication manager (DCM). Although the DCM is not
part of the DBMS, it is necessary for the DBMS to be capable of being integrated
with a variety of DCMs if the system is to be commercially viable. Even DBMSs for
personal computers should be capable of being run on a local area network so that
one centralized database can be established for users to share, rather than having
a series of disparate databases, one for each user. This does not imply that the
database has to be distributed across the network, but rather that users should be
able to access a centralized database from remote locations. We refer to this type of
topology as distributed processing (see Section 24.1.1).

(8) Integrity services

A DBMS must furnish a means to ensure that both the data in the database and
changes to the data follow certain rules.

“Database integrity” refers to the correctness and consistency of stored data: it can
be considered as another type of database protection. Although integrity is related
to security, it has wider implications: integrity is concerned with the quality of data
itself. Integrity is usually expressed in terms of constraints, which are consistency
rules that the database is not permitted to violate. For example, we may want to
specify a constraint that no member of staff can manage more than 100 properties
at any one time. Here, we would want the DBMS to check when we assign a prop-
erty to a member of staff whether this limit would be exceeded and to prevent the
assignment from occurring if the limit has been reached.

In addition to these eight services, we could also reasonably expect the following
two services to be provided by a DBMS.

(9) Services to promote data independence

A DBMS must include facilities to support the independence of programs from the
actual structure of the database.

We discussed the concept of data independence in Section 2.1.5. Data independ-
ence is normally achieved through a view or subschema mechanism. Physical data
independence is easier to achieve: there are usually several types of change that

101

102 Chapter 2 Database Environment

can be made to the physical characteristics of the database without affecting the
views. However, complete logical data independence is more difficult to achieve.
The addition of a new entity, attribute, or relationship can usually be accommo-
dated, but not their removal. In some systems, any type of change to an existing
component in the logical structure is prohibited.

(10) Utility services
A DBMS should provide a set of utility services.

Utility programs help the DBA administer the database effectively. Some utilities
work at the external level, and consequently can be produced by the DBA. Other
utilities work at the internal level and can be provided only by the DBMS vendor.
Examples of utilities of the latter kind are:

- import facilities, to load the database from flat files, and export facilities, to
unload the database to flat files;

- monitoring facilities, to monitor database usage and operation;

- statistical analysis programs, to examine performance or usage statistics;

- index reorganization facilities, to reorganize indexes and their overflows;

- garbage collection and reallocation, to remove deleted records physically from
the storage devices, to consolidate the space released, and to reallocate it where
it is needed.

Chapter Summary

The ANSI-SPARC database architecture uses three levels of abstraction: external, conceptual, and internal.
The external level consists of the users’ views of the database. The conceptual level is the community view of
the database: it specifies the information content of the entire database, independent of storage considerations. The
conceptual level represents all entities, their attributes, and their relationships, as well as the constraints on the data,
and security and integrity information. The internal level is the computer's view of the database: it specifies how
data is represented, how records are sequenced, what indexes and pointers exist, and so on.

The external/conceptual mapping transforms requests and results between the external and conceptual levels.
The conceptual/internal mapping transforms requests and results between the conceptual and intermnal levels.

A database schema is a description of the database structure. There are three different types of schema in the
database; these are defined according to the three levels of the ANSI-SPARC architecture. Data independence
makes each level immune to changes to lower levels. Logical data independence refers to the immunity of the
external schemas to changes in the conceptual schema. Physical data independence refers to the immunity of
the conceptual schema to changes in the internal schema.

A data sublanguage consists of two parts: a Data Definition Language (DDL) and a Data Manipulation
Language (DML). The DDL is used to specify the database schema and the DML is used to both read and
update the database. The part of a DML that involves data retrieval is called a query language.

Review Questions 103

A data model is a collection of concepts that can be used to describe a set of data, the operations to manip-
ulate the data, and a set of integrity constraints for the data. They fall into three broad categories: object-
based data models, record-based data models, and physical data models. The first two are

used to describe data at the conceptual and external levels; the latter is used to describe data at the

internal level.

Object-based data models include the Entity—Relationship, semantic, functional, and object-oriented models.
Record-based data models include the relational, network, and hierarchical models.

Conceptual modeling is the process of constructing a detailed architecture for a database that is independent
of implementation details, such as the target DBMS, application programs, programming languages, or any other
hysical considerations. The design of the conceptual schema is critical to the overall success of the system. It is
worth spending the time and effort necessary to produce the best possible conceptual design.

Functions and services of a multi-user DBMS include data storage, retrieval, and update; a user-accessible
catalog; transaction support; concurrency control and recovery services; authorization services; support for data
communication; integrity services; services to promote data independence; and utility services.

The system catalog is one of the fundamental components of a DBMS. It contains “data about the data,”
or metadata. The catalog should be accessible to users. The Information Resource Dictionary System is an
ISO standard that defines a set of access methods for a data dictionary. This standard allows dictionaries to be
shared and transferred from one system to another.

2.1
22
2.3
24
2.5
2.6

2.7
2.8

29
2.10
2.11
2.12
2.13
2.14

Review Questions

Explain the concept of database schema and discuss the three types of schema in a database.
What are data sublanguages! Why are they important?

What is a data model? Discuss the main types of data model.

Discuss the function and importance of conceptual modeling.

Describe the types of facility that you would expect to be provided in a multi-user DBMS.

Of the facilities described in your answer to Question 2.5, which ones do you think would not be needed in a
standalone PC DBMS? Provide justification for your answer.

Discuss the function and importance of the system catalog.

Discuss the differences between DDL and DML. What operations would you typically expect to be available in
each language?

Discuss the differences between procedural DMLs and nonprocedural DMLs.

Name four object-based data models.

Name three record-based data models. Discuss the main differences between these data models.
What is a transaction? Give an example of a transaction.

What is concurrency control and why does a DBMS need a concurrency control facility?

Define the term “database integrity”’. How does database integrity differ from database security?

(=
(=]
~

Chapter 2 Database Environment

Exercises

2.15 Analyze the DBMSs that you are currently using. Determine each system's compliance with the functions that
we would expect to be provided by a DBMS. What type of language does each system provide! What type of
architecture does each DBMS use? Check the accessibility and extensibility of the system catalog. Is it possible to
export the system catalog to another system?

2.16 Write a program that stores names and telephone numbers in a database. Write another program that stores
names and addresses in a database. Modify the programs to use external, conceptual, and internal schemas. What
are the advantages and disadvantages of this modification?

2.17 Write a program that stores names and dates of birth in a database. Extend the program so that it stores the
format of the data in the database: in other words, create a system catalog. Provide an interface that makes this
system catalog accessible to external users.

2.17 Write a program that stores names and dates of birth in a database. Extend the program so that it stores the
format of the data in the database: in other words, create a system catalog. Provide an interface that makes this
system catalog accessible to external users.

2.18 A database approach uses different data models. Common database models include the relational model, the
network model and the hierarchical model. Which data model should be chosen under which circumstances
and why?

CHAPTER

Database Architectures
and the Web

Chapter Objectives
In this chapter you will learn:

* The meaning of the client—server architecture and the advantages of this type of architecture
for a DBMS.

¢ The difference between two-tier, three-tier and n-tier client—server architectures.
* The function of an application server.

* The meaning of middleware and the different types of middleware that exist.

* The function and uses of Transaction Processing (TP) Monitors.

* The purpose of a Web service and the technological standards used to develop a Web
service.

* The meaning of service-oriented architecture (SOA).

* The difference between distributed DBMSs, and distributed processing.
* The architecture of a data warehouse.

* About cloud computing and cloud databases.

* The software components of a DBMS.

* About Oracle’s logical and physical structure.

In Chapter 1, we provided a summary of the historical development of database
systems from the 1960s onwards. During this period, although a better under-
standing of the functionality that users required was gained and new underlying
data models were proposed and implemented, the software paradigm used to
develop software systems more generally was undergoing significant change.
Database system vendors had to recognize these changes and adapt to them to
ensure that their systems were current with the latest thinking. In this chapter, we
examine the different architectures that have been used and examine emerging
developments in Web services and service-oriented architectures (SOA).

105

106 Chapter 3 Database Architectures and the Web

Figure 3.1
Teleprocessing
topology.

Structure of this Chapter In Section 3.1 we examine multi-user DBMS
architectures focusing on the two-tier client—server architecture and the three-
tier client—server architecture. We also examine the concept of middleware and
discuss the different types of middleware that exist in the database field. In Sec-
tion 3.2 we examine Web services which can be used to provide new types of
business services to users, and SOA that promotes the design of loosely coupled
and autonomous services that can be combined to provide more flexible com-
posite business processes and applications. In Section 3.3 we briefly describe the
architecture for a distributed DBMS that we consider in detail in Chapters 24
and 25, and distinguish it from distributed processing. In Section 3.4 we briefly
describe the architecture for a data warehouse and associated tools that we con-
sider in detail in Chapters 31-34. In Section 3.5 we discuss cloud computing and
cloud databases. In Section 3.6 we examine an abstract internal architecture for
a DBMS and in Section 3.7 we examine the logical and physical architecture of
the Oracle DBMS.

3.1 Multi-user DBMS Architectures

-

In this section we look at the common architectures that are used to implement
multi-user database management systems: teleprocessing, file-server, and client-
server.

3.1.1 Teleprocessing

The traditional architecture for multi-user systems was teleprocessing, where there
is one computer with a single central processing unit (CPU) and a number of ter-
minals, as illustrated in Figure 3.1. All processing is performed within the bounda-
ries of the same physical computer. User terminals are typically “dumb” ones,
incapable of functioning on their own, and cabled to the central computer. The
terminals send messages via the communications control subsystem of the operat-
ing system to the user’s application program, which in turn uses the services of

3.1 Multi-user DBMS Architectures

the DBMS. In the same way, messages are routed back to the user’s terminal.
Unfortunately, this architecture placed a tremendous burden on the central com-
puter, which had to not only run the application programs and the DBMS, but also
carry out a significant amount of work on behalf of the terminals (such as format-
ting data for display on the screen).

In recent years, there have been significant advances in the development of
high-performance personal computers and networks. There is now an identifi-
able trend in industry towards downsizing, that is, replacing expensive main-
frame computers with more cost-effective networks of personal computers that
achieve the same, or even better, results. This trend has given rise to the next two
architectures: file-server and client-server.

3.1.2 File-Server Architecture

A computer attached to a network with the primary purpose of
File server providing shared storage for computer files such as documents,
spreadsheets, images, and databases.

In a file-server environment, the processing is distributed about the network,
typically a local area network (LAN). The file-server holds the files required by the
applications and the DBMS. However, the applications and the DBMS run on each
workstation, requesting files from the file-server when necessary, as illustrated in
Figure 3.2. In this way, the file-server acts simply as a shared hard disk drive. The
DBMS on each workstation sends requests to the file-server for all data that the
DBMS requires that is stored on disk. This approach can generate a significant
amount of network traffic, which can lead to performance problems. For example,
consider a user request that requires the names of staff who work in the branch at
163 Main St. We can express this request in SQL (see Chapter 6) as:

SELECT fName, IName
FROM Branch b, Staff s
WHERE b.branchNo = s.branchNo AND b.street = ‘163 Main St’;

Workstation 2

Workstation 1 Workstation 3

Requests for data l T Files returned

=)

Database
File-server

Figure 3.2
File-server
architecture.

107

108 Chapter 3 Database Architectures and the Web

Figure 3.3
Client—server
architecture.

As the file-server has no knowledge of SQL, the DBMS must request the files cor-
responding to the Branch and Staff relations from the file-server, rather than just the
staff names that satisfy the query.

The file-server architecture, therefore, has three main disadvantages:

(1) There is a large amount of network traffic.
(2) A tull copy of the DBMS is required on each workstation.

(3) Concurrency, recovery, and integrity control are more complex, because there
can be multiple DBMSs accessing the same files.

3.1.3 Traditional Two-Tier Client-Server Architecture

To overcome the disadvantages of the first two approaches and accommodate an
increasingly decentralized business environment, the client-server architecture was
developed. Client-server refers to the way in which software components interact to
form a system. As the name suggests, there is a client process, which requires some
resource, and a server, which provides the resource. There is no requirement that the
client and server must reside on the same machine. In practice, it is quite common
to place a server at one site in a LAN and the clients at the other sites. Figure 3.3
illustrates the client-server architecture and Figure 3.4 shows some possible combina-
tions of the client-server topology.

Data-intensive business applications consist of four major components: the data-
base, the transaction logic, the business and data application logic, and the user
interface. The traditional two-tier client-server architecture provides a very basic
separation of these components. The client (tier 1) is primarily responsible for
the presentation of data to the user, and the server (tier 2) is primarily responsible
for supplying data services to the client, as illustrated in Figure 3.5. Presentation
services handle user interface actions and the main business and data application
logic. Data services provide limited business application logic, typically validation

Client 2

Database

Server
(with DBMS)

3.1 Multi-user DBMS Architectures 109

= Figure 3.4
: Alternative
client-server
topologies: (a)

single client,
Server single server;
(b) multiple
clients, single
server;
(c) multiple
clients, mutltiple
servers.
=]
Server 1
Server 2
First Tier — Tasks Figure 3.5
—
Client ~ l:l e User interface The traditional
gl ') e Main business and data processing logic two-tier
client—server
architecture.
Second Tier \ ‘ Tasks
=)

e Server-side validation
e Database access

Database server

110

Chapter 3 Database Architectures and the Web

that the client is unable to carry out due to lack of information, and access to the
requested data, independent of its location. The data can come from relational
DBMSs, object-relational DBMSs, object-oriented DBMSs, legacy DBMSs, or pro-
prietary data access systems. Typically, the client would run on end-user desktops
and interact with a centralized database server over a network.

A typical interaction between client and server is as follows. The client takes
the user’s request, checks the syntax, and generates database requests in SQL or
another database language appropriate to the application logic. It then transmits
the message to the server, waits for a response, and formats the response for the
end-user. The server accepts and processes the database requests, then transmits
the results back to the client. The processing involves checking authorization,
ensuring integrity, maintaining the system catalog, and performing query and
update processing. In addition, it also provides concurrency and recovery control.
The operations of client and server are summarized in Table 3.1.

There are many advantages to this type of architecture. For example:

« It enables wider access to existing databases.

« Increased performance: If the clients and server reside on different computers,
then different CPUs can be processing applications in parallel. It should also be
easier to tune the server machine if its only task is to perform database processing.

+ Hardware costs may be reduced: It is only the server that requires storage and
processing power sufficient to store and manage the database.

+ Communication costs are reduced: Applications carry out part of the operations
on the client and send only requests for database access across the network,
resulting in less data being sent across the network.

+ Increased consistency: The server can handle integrity checks, so that constraints
need be defined and validated only in the one place, rather than having each
application program perform its own checking.

« It maps on to open systems architecture quite naturally.

Some database vendors have used this architecture to indicate distributed database
capability, that is, a collection of multiple, logically interrelated databases distributed
over a computer network. However, although the client-server architecture can be
used to provide distributed DBMSs, by itself it does not constitute a distributed
DBMS. We discuss distributed DBMSs briefly in Section 3.3 and more fully in
Chapters 24 and 25.

TABLE 3.1 Summary of client-server functions.
CLIENT SERVER

Manages the user interface Accepts and processes database requests from clients

Accepts and checks syntax of user input Checks authorization

Processes application logic Ensures integrity constraints not violated
Generates database requests and Performs query/update processing and transmits
transmits to server response to client

Passes response back to user Maintains system catalog

Provides concurrent database access
Provides recovery control

3.1 Multi-user DBMS Architectures 111

3.1.4 Three-Tier Client-Server Architecture

The need for enterprise scalability challenged the traditional two-tier client-server
model. In the mid 1990s, as applications became more complex and could poten-
tially be deployed to hundreds or thousands of end-users, the client side presented
two problems that prevented true scalability:

+ A “fat” client, requiring considerable resources on the client’s computer to run
effectively. This includes disk space, RAM, and CPU power.

- A significant client-side administration overhead.

By 1995, a new variation of the traditional two-tier client-server model appeared
to solve the problem of enterprise scalability. This new architecture proposed three
layers, each potentially running on a different platform:

(1) The user interface layer, which runs on the end-user’s computer (the client).

(2) The business logic and data processing layer. This middle tier runs on a server
and is often called the application server.

(3) A DBMS, which stores the data required by the middle tier. This tier may run
on a separate server called the database server.

As illustrated in Figure 3.6, the client is now responsible for only the application’s
user interface and perhaps performing some simple logic processing, such as input
validation, thereby providing a “thin” client. The core business logic of the applica-
tion now resides in its own layer, physically connected to the client and database
server over a LAN or wide area network (WAN). One application server is designed
to serve multiple clients.

First Tier Tasks

e B

Client o e Userinterface
|
iy 3

Second Tier v Tasks
Application server =1 e Business logic
e Data processing logic
Third Tier i Tasks
Database server = e Data validation
e Database access

Figure 3.6
The three-tier
architecture.

112 Chapter 3 Database Architectures and the Web

Figure 3.7
Four-tier
architecture with
the middle tier
split into a Web
server and

application server.

The three-tier design has many advantages over traditional two-tier or single-tier
designs, which include:

+ The need for less expensive hardware because the client is “thin.”

- Application maintenance is centralized with the transfer of the business logic for
many end-users into a single application server. This eliminates the concerns of soft-
ware distribution that are problematic in the traditional two-tier client-server model.

+ The added modularity makes it easier to modify or replace one tier without
affecting the other tiers.

+ Load balancing is easier with the separation of the core business logic from the
database functions.

An additional advantage is that the three-tier architecture maps quite naturally to
the Web environment, with a Web browser acting as the “thin” client, and a Web
server acting as the application server.

3.1.5 N-Tier Architectures

The three-tier architecture can be expanded to n tiers, with additional tiers provid-
ing more flexibility and scalability. For example, as illustrated in Figure 3.7, the
middle tier of the architecture could be split into two, with one tier for the Web

v

=0
Tier 1
Client

=1
Tier 2 “
Web server

E0
Tier 3 ‘
Application server

==
Tier 4
Database server

3.1 Multi-user DBMS Architectures

server and another tier for the application server. In environments with a high vol-
ume of throughput, the single Web server could be replaced by a set of Web servers
(or a Web farm) to achieve efficient load balancing.

Application servers

Application Hosts an application programming interface (API) to expose busi-
server ness logic and business processes for use by other applications.

An application server must handle a number of complex issues:
+ concurrency;

+ network connection management;

« providing access to all the database servers;

+ database connection pooling;

+ legacy database support;

+ clustering support;

+ load balancing;

« failover.

In Chapter 29 we will examine a number of application servers:

+ Java Platform, Enterprise Edition (JEE), previously known as J2EE, is a specifica-
tion for a platform for server programming in the Java programming language.
As with other Java Community Process specifications, JEE is also considered infor-
mally to be a standard, as providers must agree to certain conformance require-
ments in order to declare their products to be “JEE-compliant.” A JEE application
server can handle the transactions, security, scalability, concurrency, and manage-
ment of the components that are deployed to it, meaning that the developers
should be able to concentrate more on the business logic of the components rather
than on infrastructure and integration tasks.

Some well known JEE application servers are WebLogic Server and Oracle
GoldFish Server from Oracle Corporation, JBoss from Red Hat, WebSphere
Application Server from IBM, and the open source Glassfish Application Server.
We discuss the JEE platform and the technologies associated with accessing data-
bases in Section 29.7.

« .NET Framework is Microsoft’s offering for supporting the development of the
middle tier. We discuss Microsoft .NET in Section 29.8.

+ Oracle Application Server provides a set of services for assembling a scalable
multitier infrastructure to support e-Business. We discuss the Oracle Application
Server in Section 29.9.

3.1.6 Middleware

. Computer software that connects software components or
Middleware S
applications.

Middleware 1s a generic term used to describe software that mediates with other
software and allows for communication between disparate applications in a

113

114

Chapter 3 Database Architectures and the Web

heterogeneous system. The need for middleware arises when distributed systems
become too complex to manage efficiently without a common interface. The need
to make heterogeneous systems work efficiently across a network and be flexible
enough to incorporate frequent modifications led to the development of middle-
ware, which hides the underlying complexity of distributed systems.

Hurwitz (1998) defines six main types of middleware:

« Asynchronous Remote Procedure Call (RPC): An interprocess communication tech-
nology that allows a client to request a service in another address space (typically
on another computer across a network) without waiting for a response. An
RPC is initiated by the client sending a request message to a known remote
server in order to execute a specified procedure using supplied parameters.
This type of middleware tends to be highly scalable, as very little information
about the connection and the session are maintained by either the client or
the server. On the other hand, if the connection is broken, the client has to
start over again from the beginning, so the protocol has low recoverability.
Asynchronous RPC is most appropriate when transaction integrity is not
required.

« Synchronous RPC: Similar to asynchronous RPC, however, while the server is pro-
cessing the call, the client is blocked (it has to wait until the server has finished
processing before resuming execution). This type of middleware is the least scal-
able but has the best recoverability.

There are a number of analogous protocols to RPC, such as:

— Java’s Remote Method Invocation (Java RMI) API provides similar function-
ality to standard UNIX RPC methods;

— XML-RPC is an RPC protocol that uses XML to encode its calls and HT'TP
as a transport mechanism. We will discuss HI'TP in Chapter 29 and XML in
Chapter 30.

— Microsoft .NET Remoting offers RPC facilities for distributed systems
implemented on the Windows platform. We will discuss the .NET platform
in Section 29.8.

— CORBA provides remote procedure invocation through an intermediate layer
called the “Object Request Broker.” We will discuss CORBA in Section 28.1.

— The Thrift protocol and framework for the social networking Web site
Facebook.

« Publish/subscribe: An asynchronous messaging protocol where subscribers subscribe
to messages produced by publishers. Messages can be categorized into classes
and subscribers express interest in one or more classes, and receive only mes-
sages that are of interest, without knowledge of what (if any) publishers there
are. This decoupling of publishers and subscribers allows for greater scalability
and a more dynamic network topology. Examples of publish/subscribe middle-
ware include TIBCO Rendezvous from TIBCO Software Inc. and Ice (Internet
Communications Engine) from ZeroC Inc.

* Message-oriented middleware (MOM): Software that resides on both the client and
server and typically supports asynchronous calls between the client and server
applications. Message queues provide temporary storage when the destination
application is busy or not connected. There are many MOM products on the mar-
ket, including WebSphere MQ from IBM, MSMQ (Microsoft Message Queuing),
JMS (Java Messaging Service), which is part of JEE and enables the development

3.1 Multi-user DBMS Architectures

of portable, message-based applications in Java, Sun Java System Message Queue
(SJSMQ), which implements JMS, and MessageQ from Oracle Corporation.

+ Object-request broker (ORB): Manages communication and data exchange between
objects. ORBs promote interoperability of distributed object systems by allowing
developers to build systems by integrating together objects, possibly from dif-
ferent vendors, that communicate with each other via the ORB. The Common
Object Requesting Broker Architecture (CORBA) is a standard defined by the
Object Management Group (OMG) that enables software components written
in multiple computer languages and running on multiple computers to work
together. An example of a commercial ORB middleware product is Orbix from
Progress Software.

« SQL-oriented data access: Connects applications with databases across the net-
work and translates SQL requests into the database’s native SQL or other
database language. SQL-oriented middleware eliminates the need to code
SQL-specific calls for each database and to code the underlying communica-
tions. More generally, database-oriented middleware connects applications to any
type of database (not necessarily a relational DBMS through SQL). Examples
include Microsoft’s ODBC (Open Database Connectivity) API, which exposes
a single interface to facilitate access to a database and then uses drivers to
accommodate differences between databases, and the JDBC API, which uses a
single set of Java methods to facilitate access to multiple databases. Within this
category we would also include gateways, which act as mediators in distributed
DBMSs to translate one database language or dialect of a language into to
another language or dialect (for example, Oracle SQL into IBM’s DB2 SQL
or Microsoft SQL Server SQL into Object Query Language, or OQL). We will
discuss gateways in Chapter 24 and ODBC and JDBC in Chapter 29.

In the next section, we examine one particular type of middleware for transaction
processing.

3.1.7 Transaction Processing Monitors

A program that controls data transfer between clients and servers
TP Monitor in order to provide a consistent environment, particularly for
online transaction processing (OLTP).

Complex applications are often built on top of several resource managers (such as
DBMSs, operating systems, user interfaces, and messaging software). A Transaction
Processing Monitor, or TP Monitor, is a middleware component that provides access
to the services of a number of resource managers and provides a uniform interface
for programmers who are developing transactional software. A TP Monitor forms
the middle tier of a three-tier architecture, as illustrated in Figure 3.8. TP Monitors
provide significant advantages, including:

+ Transaction routing: The TP Monitor can increase scalability by directing transac-
tions to specific DBMSs.

« Managing distributed transactions: The TP Monitor can manage transactions that
require access to data held in multiple, possibly heterogeneous, DBMSs. For exam-
ple, a transaction may require to update data items held in an Oracle DBMS at site
1, an Informix DBMS at site 2, and an IMS DBMS as site 3. TP Monitors normally

115

116 | Chapter 3 Database Architectures and the Web

=11
]
|
|
E] Service calls i Il
!—> Service |
—
-
Service B
- [L
m > TPM 5
- _|—> Service —[_>
=11
- g
= D Service [— ‘
N == ‘
Clients Application server Database servers
with TP Monitor
Tier 1 Tier 2 Tier 3

Figure 3.8 The Transaction Processing Monitor as the middle tier of a three-tier client—server
architecture.

control transactions using the X/Open Distributed Transaction Processing (DTP)
standard. A DBMS that supports this standard can function as a resource manager
under the control of a TP Monitor acting as a transaction manager. We discuss
distributed transactions and the DTP standard in Chapters 24 and 25.

* Load balancing: The TP Monitor can balance client requests across multiple
DBMSs on one or more computers by directing client service calls to the least
loaded server. In addition, it can dynamically bring in additional DBMSs as
required to provide the necessary performance.

+ Funneling: In environments with a large number of users, it may sometimes be
difficult for all users to be logged on simultaneously to the DBMS. In many cases,
we would find that users generally do not need continuous access to the DBMS.
Instead of each user connecting to the DBMS, the TP Monitor can establish con-
nections with the DBMSs as and when required, and can funnel user requests
through these connections. This allows a larger number of users to access the
available DBMSs with a potentially much smaller number of connections, which
in turn would mean less resource usage.

« Increased reliability: The TP Monitor acts as a transaction manager, performing the
necessary actions to maintain the consistency of the database, with the DBMS
acting as a resource manager. If the DBMS fails, the TP Monitor may be able to
resubmit the transaction to another DBMS or can hold the transaction until the
DBMS becomes available again.

TP Monitors are typically used in environments with a very high volume of
transactions, where the TP Monitor can be used to offload processes from the
DBMS server. Prominent examples of TP Monitors include CICS (which is used
primarily on IBM mainframes under z/OS and z/VSE) and Tuxedo from Oracle
Corporation. In addition, the Java Transaction API (JTA), one of the Java
Enterprise Edition (JEE) APIs, enables distributed transactions to be performed
across multiple X/Open XA resources in a Java environment. Open-source
implementations of JTA include JBossTS, formerly known as Arjuna Transaction
Service, from Red Hat and Bitronix Transaction Manager from Bitronix.

3.2 Web Services and Service-Oriented Architectures

3.2 Web Services and Service-Oriented Architectures

3.2.1 Web Services

|

. A software system designed to support interoperable machine-to-
Web service .o .

machine interaction over a network.

Although it has been only about 20 years since the conception of the Internet,
in this relatively short period of time it has profoundly changed many aspects of
society, including business, government, broadcasting, shopping, leisure, com-
munication, education, and training. Though the Internet has allowed companies
to provide a wide range of services to users, sometimes called B2C (Business to
Consumer), Web services allow applications to integrate with other applications
across the Internet and may be a key technology that supports B2B (Business to
Business) interaction.

Unlike other Web-based applications, Web services have no user interface and
are not aimed at Web browsers. Web services instead share business logic, data, and
processes through a programmatic interface across a network. In this way, it is the
applications that interface and not the users. Developers can then add the Web
service to a Web page (or an executable program) to offer specific functionality to
users. Examples of Web services include:

+ Microsoft Bing Maps and Google Maps Web services provide access to location-
based services, such as maps, driving directions, proximity searches, and geoco-
ding (that is, converting addresses into geographic coordinates) and reverse
geocoding.

+ Amazon Simple Storage Service (Amazon S3) is a simple Web services interface
that can be used to store and retrieve large amounts of data, at any time, from
anywhere on the Web. It gives any developer access to the same highly scalable,
reliable, fast, inexpensive data storage infrastructure that Amazon uses to run
its own global network of Web sites. Charges are based on the “pay-as-you-go”
policy, currently $0.125 per GB for the first 50TB/month of storage used.

+ Geonames provides a number of location-related Web services; for example, to
return a set of Wikipedia entries as XML documents for a given place name or to
return the time zone for a given latitude/longitude.

« DOTS Web services from Service Objects Inc., an early adopter of Web services,
provide a range of services such as company information, reverse telephone num-
ber lookup, email address validation, weather information, IP address-to-location
determination.

+ Xignite is a B2B Web service that allows companies to incorporate financial
information into their applications. Services include US equities information,
real-time securities quotes, US equities pricing, and financial news.

Key to the Web services approach is the use of widely accepted technologies and
standards, such as:

« XML (extensible Markup Language).

+ SOAP (Simple Object Access Protocol) is a communication protocol for exchang-
ing structured information over the Internet and uses a message format based on
XML. It is both platform- and language-independent.

117

118 Chapter 3 Database Architectures and the Web

Figure 3.9
Relationship
between WSDL,
UDDI, and
SOAP.

Web
services directory
(UDDI)

Web service

2. Publish

WSDL
documents

XML interface
(WSDL)

1. Generate

4. Invoke

XML interface
(WSDL)

Client application

« WSDL (Web Services Description Language) protocol, again based on XML, is
used to describe and locate a Web service.

+ UDDI (Universal Discovery, Description, and Integration) protocol is a platform-
independent, XML-based registry for businesses to list themselves on the Internet.
It was designed to be interrogated by SOAP messages and to provide access to
WSDL documents describing the protocol bindings and message formats required
to interact with the Web services listed in its directory.

Figure 3.9 illustrates the relationship between these technologies. From the database
perspective, Web services can be used both from within the database (to invoke an
external Web service as a consumer) and the Web service itself can access its own
database (as a provider) to maintain the data required to provide the requested service.

RESTful Web services

Web API is a development in Web services where emphasis has been moving away
from SOAP-based services towards Representational State Transfer (REST) based
communications. REST services do not require XML, SOAP, WSDL, or UDDI
definitions. REST is an architectural style that specifies constraints, such as a uni-
form interface, that if applied to a Web service creates desirable properties, such
as performance, scalability, and modifiability, that enable services to work best on
the Web. In the REST architectural style, data and functionality are considered
resources and are accessed using Uniform Resource Identifiers (URIs), generally
links on the Web. The resources are acted upon by using a set of simple, well-
defined HTML operations for create, read, update, and delete: PUT, GET, POST,
and DELETE. PUT creates a new resource, which can be then deleted by using
DELETE. GET retrieves the current state of a resource in some representation.
POST transfers a new state into a resource.

REST adopts a client-server architecture and is designed to use a stateless commu-
nication protocol, typically HI'TP. In the REST architecture style, clients and servers
exchange representations of resources by using a standardized interface and protocol.

We will discuss Web services, HITML, and URIs in Section 29.2.5 and SOAP,
WSDL, UDDI in Chapters 29 and 30.

3.2 Web Services and Service-Oriented Architectures 119

3.2.2 Service-Oriented Architectures (SOA)

A business-centric software architecture for building applications that
implement business processes as sets of services published at a granular-

SOA ity relevant to the service consumer. Services can be invoked, published,
and discovered, and are abstracted away from the implementation using
a single standards-based form of interface.

Flexibility is recognized as a key requirement for businesses in a time when IT is
providing business opportunities that were never envisaged in the past while at the
same time the underlying technologies are rapidly changing. Reusability has often
been seen as a major goal of software development and underpins the object-oriented
paradigm: object-oriented programming (OOP) may be viewed as a collection of
cooperating objects, as opposed to a traditional view in which a program may be
seen as a group of tasks to compute. In OOP, each object is capable of receiving
messages, processing data, and sending messages to other objects. In traditional I'T
architectures, business process activities, applications, and data tend to be locked in
independent, often-incompatible “silos,” where users have to navigate separate net-
works, applications, and databases to conduct the chain of activities that complete a
business process. Unfortunately, independent silos absorb an inordinate amount of
I'T budget and staff time to maintain. This architecture is illustrated in Figure 3.10(a)
where we have three processes: Service Scheduling, Order Processing, and Account
Management, each accessing a number of databases. Clearly there are common
“services” in the activities to be performed by these processes. If the business require-
ments change or new opportunities present themselves, the lack of independence
among these processes may lead to difficulties in quickly adapting these processes.

The SOA approach attempts to overcome this difficulty by designing loosely cou-
pled and autonomous services that can be combined to provide flexible composite
business processes and applications. Figure 3.10(b) illustrates the same business
processes rearchitected to use a service-oriented approach.

The essence of a service, therefore, is that the provision of the service is inde-
pendent of the application using the service. Service providers can develop special-
ized services and offer these to a range of service users from different organizations.
Applications may be constructed by linking services from various providers using
either a standard programming language or a specialized service orchestration
language such as BPEL (Business Process Execution Language).

What makes Web services designed for SOA different from other Web services
is that they typically follow a number of distinct conventions. The following are a
set of common SOA principles that provide a unique design approach for building
Web services for SOA:

Loose coupling: Services must be designed to interact on a loosely coupled basis;

Reusability: Logic that can potentially be reused is designed as a separate service;

Contract: Services adhere to a communications contract that defines the informa-
tion exchange and any additional service description information, specified by
one or more service description documents;

Abstraction: Beyond what is described in the service contract, services hide logic
from the outside world;

120 | Chapter 3 Database Architectures and the Web

Siloed ¢ Closed * Monolithic e Brittle Shared services * Collaborative ¢ Interoperable ¢ Integrated

Application Dependent Business Functions Composite Applications

Order Composite Order
processing application processing
1 s Composed
Check customer late ship business process L I'¢'. I-(>'l

status m ges Bl

Determine product status

availability m Reusable Business Services
Ventfy dit m k credit 14 ° °
pELomer crecl Reusable Create Check Check Reusable = Reusable
Order status B service invoice customer order service service
status status
[
Reusable Reusable Check Check Reusable
service service credit inventory = service

Da Data Repository

] Data xterna ! xterna

(@) (b)

Figure 3.10 (a) Traditional IT architecture for three business processes; (b) service-oriented
architecture that splits the processes into a number of reusable services.

« Composability: Services may compose other services, so that logic can be repre-
sented at different levels of granularity thereby promoting reusability and the
creation of abstraction layers;

+ Autonomy: Services have control over the logic they encapsulate and are not
dependent upon other services to execute this governance;

+ Stateless: Services should not be required to manage state information, as this can
affect their ability to remain loosely-coupled;

* Discoverability: Services are designed to be outwardly descriptive so that they can
be found and assessed via available discovery mechanisms.

Note that SOA is not restricted to Web services and could be used with other tech-
nologies. Further discussion of SOA is beyond the scope of this book and the inter-
ested reader is referred to the additional reading listed at the end of the book for
this chapter.

3.3 Distributed DBMSs

-,

As discussed in Chapter 1, a major motivation behind the development of data-
base systems is the desire to integrate the operational data of an organization and
to provide controlled access to the data. Although we may think that integration
and controlled access implies centralization, this is not the intention. In fact, the
development of computer networks promotes a decentralized mode of work. This

3.3 Distributed DBMSs

decentralized approach mirrors the organizational structure of many companies,
which are logically distributed into divisions, departments, projects, and so on, and
physically distributed into offices, plants, or factories, where each unit maintains
its own operational data. The development of a distributed DBMS that reflects
this organizational structure, makes the data in all units accessible, and stores data
proximate to the location where it is most frequently used, should improve the
ability to share the data and should improve the efficiency with which we can access
the data.

Distributed A logically interrelated collection of shared data (and a description
database of this data), physically distributed over a computer network.

Distributed
DBMS

The software system that permits the management of the distrib-
uted database and makes the distribution transparent to users.

A distributed database management system (DDBMS) consists of a single logical
database that is split into a number of fragments. Each fragment is stored on one or
more computers (replicas) under the control of a separate DBMS, with the comput-
ers connected by a communications network. Each site is capable of independently
processing user requests that require access to local data (that is, each site has some
degree of local autonomy) and is also capable of processing data stored on other
computers in the network.

Users access the distributed database via applications. Applications are classified
as those that do not require data from other sites (local applications) and those that
do require data from other sites (global applications). We require a DDBMS to have at
least one global application. A DDBMS therefore has the following characteristics:

« a collection of logically related shared data;

« data split into a number of fragments;

+ fragments may be replicated;

« fragments/replicas are allocated to sites;

- sites are linked by a communications network;

« data at each site is under the control of a DBMS;

« DBMS at each site can handle local applications, autonomously;
+ each DBMS participates in at least one global application.

It is not necessary for every site in the system to have its own local database, as
illustrated by the topology of the DDBMS shown in Figure 3.11.

From the definition of the DDBMS, the system is expected to make the distribu-
tion transparent (invisible) to the user. Thus, the fact that a distributed database is
split into fragments that can be stored on different computers and perhaps repli-
cated should be hidden from the user. The objective of transparency is to make the
distributed system appear like a centralized system. This is sometimes referred to
as the fundamental principle of distributed DBMSs. This requirement provides sig-
nificant functionality for the end-user but, unfortunately, creates many additional
problems that have to be handled by the DDBMS.

121

122 Chapter 3 Database Architectures and the Web

Figure 3.11
Distributed
database
management
system.

Figure 3.12
Distributed
processing.

Site 1
==l
9]
|
|
I
DB
Site 4 Site 2
==l =l
3 E]
} Computer }
network

il
O

il

DB
DB

Site 3

Distributed processing
It is important to make a distinction between a distributed DBMS and distributed

processing:

Distributed A centralized database that can be accessed over a computer network.

processing

The key point with the definition of a distributed DBMS is that the system consists
of data that is physically distributed across a number of sites in the network. If the data
is centralized, even though other users may be accessing the data over the network, we
do not consider this to be a distributed DBMS simply distributed processing. We illus-
trate the topology of distributed processing in Figure 3.12. Compare this figure, which
has a central database at site 2, with Figure 3.11, which shows several sites each with
their own database. We will discuss distributed DBMSs in depth in Chapters 24 and 25.

Site 1
=1
Site 4 Site 2
=i =il
El =
} Computer }
p | network B |
=0

DB

Site 3

3.4 Data Warehousing

3.4 pata Warehousing

| .
Since the 1970s, organizations have largely focused their investment in new
computer systems (called online transaction processing or OLTP systems) that
automate business processes. In this way, organizations gained competitive advan-
tage through systems that offered more efficient and cost-effective services to the
customer. Throughout this period, organizations accumulated growing amounts of
data stored in their operational databases. However, in recent times, where such
systems are commonplace, organizations are focusing on ways to use operational
data to support decision making as a means of regaining competitive advantage.
Operational systems were never primarily designed to support business decision
making and so using such systems may never be an easy solution. The legacy is that
a typical organization may have numerous operational systems with overlapping
and sometimes contradictory definitions, such as data types. The challenge for an
organization is to turn its archives of data into a source of knowledge, so that a sin-
gle integrated/consolidated view of the organization’s data is presented to the user.
The concept of a data warehouse was deemed the solution to meet the require-
ments of a system capable of supporting decision making, receiving data from
multiple operational data sources.

A consolidated/integrated view of corporate data drawn from
disparate operational data sources and a range of end-user
access tools capable of supporting simple to highly complex
queries to support decision making.

Data warehouse

The data held in a data warehouse is described as being subject-oriented, inte-
grated, time-variant, and nonvolatile (Inmon, 1993).

« Subject-oriented, as the warehouse is organized around the major subjects of the
organization (such as customers, products, and sales) rather than the major appli-
cation areas (such as customer invoicing, stock control, and product sales). This
is reflected in the need to store decision-support data rather than application-
oriented data.

« Integrated, because of the coming together of source data from different organi-
zation-wide applications systems. The source data is often inconsistent, using, for
example, different data types and/or formats. The integrated data source must
be made consistent to present a unified view of the data to the users.

« Time-variant, because data in the warehouse is accurate and valid only at some
point in time or over some time interval.

« Nonvolatile, as the data is not updated in real time but is refreshed from opera-
tional systems on a regular basis. New data is always added as a supplement to
the database, rather than a replacement.

The typical architecture of a data warehouse is shown in Figure 3.13.

The source of operational data for the data warehouse is supplied from mainframes,
proprietary file systems, private workstations and servers, and external systems such
as the Internet. An operational data store (ODS) is a repository of current and inte-
grated operational data used for analysis. It is often structured and supplied with
data in the same way as the data warehouse, but may in fact act simply as a staging
area for data to be moved into the warehouse. The load manager performs all the

123

124 | Chapter 3 Database Architectures and the Web

Operational data
source 1

e
f————

- 5
Operational data
source 2

Operational data
source n

Operational
data store (ODS)

B W

Warehouse Manager

=
Reporting, query,
application development,
and EIS tools
Metadata Highly summarized
data
Load Query
Manager Manager —
Lightly summarized S
data OLAP tools
DBMS
Detailed data
Warehouse Manager sl
~
Iy Data mining tools
v End-user

access tools

Archive/backup data

Figure 3.13 The typical architecture of a data warehouse.

operations associated with the extraction and loading of data into the warehouse.
The warehouse manager performs all the operations associated with the management
of the data, such as the transformation and merging of source data; creation of
indexes and views on base tables; generation of aggregations, and backing up and
archiving data. The query manager performs all the operations associated with the
management of user queries. Detailed data is not stored online but is made available
by summarizing the data to the next level of detail. However, on a regular basis,
detailed data is added to the warehouse to supplement the summarized data. The
warehouse stores all the predefined lightly and highly summarized data generated by
the warehouse manager. The purpose of summary information is to speed up the
performance of queries. Although there are increased operational costs associated
with initially summarizing the data, this cost is offset by removing the requirement
to continually perform summary operations (such as sorting or grouping) in answer-
ing user queries. The summary data is updated continuously as new data is loaded
into the warehouse. Detailed and summarized data is stored offline for the purposes
of archiving and backup. Metadata (data about data) definitions are used by all the
processes in the warehouse, including the extraction and loading processes; the
warehouse management process; and as part of the query management process.
The principal purpose of data warehousing is to provide information to business
users for strategic decision making. These users interact with the warehouse using
end-user access tools. The data warehouse must efficiently support ad hoc and routine

3.5 Cloud Computing

analysis as well as more complex data analysis. The types of end-user access tools
typically include reporting and query tools, application development tools, execu-
tive information system (EIS) tools, online analytical processing (OLAP) tools, and
data mining tools. We will discuss data warehousing, OLAP, and data mining tools
in depth in Chapters 31-34.

£ 3.5 cloud Computing

| IE—

A model for enabling ubiquitous, convenient, on-demand network
access to a shared pool of configurable computing resources (e.g.,
networks, servers, storage, applications, and services) that can be
rapidly provisioned and released with minimal management effort
or service provider interaction (NIST, 2011)".

Cloud
computing

Cloud computing is the term given to the use of multiple servers over a digital
network as if they were one computer. The ‘Cloud’ itself is a virtualization of
resources—networks, servers, applications, data storage, and services—which the
end-user has on-demand access to. Virtualization is the creation of a virtual ver-
sion of something, such as a server, operating system, storage device, or network
resource. The aim is to provide these resources with minimal management or
service provider interaction. Cloud computing offers users resources without the
requirement of having knowledge of the systems or the location of the systems that
deliver them. Additionally, the cloud can provide users with a far greater range of
applications and services. Therefore, the aim of the cloud is to provide users and
businesses with scalable and tailored services.

NIST views the cloud model as consisting of five essential characteristics, three ser-
vice models, and four deployment models. The essential characteristics are as follows:

+ On-demand self-service. Consumers can obtain, configure, and deploy cloud services
themselves using cloud service catalogues, without requiring the assistance of
anyone from the cloud provider.

« Broad network access. The most vital characteristic of cloud computing, namely
that it is network based, and accessible from anywhere, from any standardized
platform (e.g., desktop computers, laptops, mobile devices).

« Resource pooling. The cloud provider’s computing resources are pooled to serve
multiple consumers, with different physical and virtual resources dynamically
assigned and reassigned according to consumer demand. Examples of resources
include storage, processing, memory, and network bandwidth.

* Rapid elasticity. Resource pooling avoids the capital expenditure required for
the establishment of network and computing infrastructure. By outsourcing to a
cloud, consumers can cater for the spikes in demand for their services by using
the cloud provider’s computing capacity, and the risk of outages and service
interruptions are significantly reduced. Moreover, capabilities can be elastically
provisioned and released, in some cases automatically, to scale rapidly based
on demand. To the consumer, the capabilities available for provisioning often
appear to be unlimited and can be called on in any quantity at any time.

' NIST, 2011. The NIST Definition of Cloud Computing, NIST Special Publication 800-145,
National Institute of Standards, September 2011.

125

126

Chapter 3 Database Architectures and the Web

« Measured service. Cloud systems automatically control and optimize resource

use by leveraging a metering capability appropriate to the type of service (e.g.,
storage, processing, bandwidth, and active user accounts). Resource usage can be
monitored, controlled, and charged for.

The three service models defined by NIST are as follows:

« Software as a Service (SaaS). Software and associated data are centrally hosted on

the cloud. SaaS is typically accessed from various client devices through a thin cli-
ent interface, such as a Web browser. The consumer does not manage or control
the underlying cloud infrastructure with the possible exception of limited user-
specific application configuration settings. SaaS may be considered the oldest and
most mature type of cloud computing. Examples include Salesforce.com sales
management applications, NetSuite’s integrated business management software,
Google’s Gmail, and Cornerstone OnDemand.

Platform as a Service (PaaS). PaaS a computing platform that allows the creation
of web applications quickly and easily and without the complexity of buying and
maintaining the software and infrastructure underneath it. Sometimes, PaaS$ is
used to extend the capabilities of applications developed as SaaS. While ear-
lier application development required hardware, an operating system, a data-
base, middleware, Web servers, and other software, with the PaaS model only
the knowledge to integrate them is required. The rest is handled by the PaaS
provider. Examples of PaaS include Salesforce.com’s Force.com, Google’s App
Engine, and Microsoft’s Azure. The consumer does not manage or control the
underlying cloud infrastructure including network, servers, operating systems, or
storage, but has control over the deployed applications and possibly configura-
tion settings for the hosting environment.

« Infrastructure as a Service (IaaS). laas delivers servers, storage, network and oper-

ating systems—typically a platform virtualization environment—to consumers
as an on-demand service, in a single bundle and billed according to usage. A
popular use of Iaa$ is in hosting Web sites, where the in-house infrastructure is
not burdened with this task but left free to manage the business. Amazon’s Elastic
Compute Cloud (EC2), Rackspace, and GoGrid are examples of IaaS. The con-
sumer does not manage or control the underlying cloud infrastructure but has
control over operating systems, storage, and deployed applications, and possibly
limited control of select networking components (e.g., firewalls).

These models are illustrated in Figure 3.14.
The four main deployment models for the cloud are:

« Private cloud. Cloud infrastructure is operated solely for a single organization,

whether managed internally by the organization, a third party, or some combina-
tion of them, and it may be hosted internally or externally.

Community cloud. Cloud infrastructure is shared for exclusive use by a specific
community of organizations that have common concerns (e.g., security require-
ments, compliance, jurisdiction). It may be owned and managed by one or more
of the organizations in the community, a third party, or some combination of
them, and it may be hosted internally or externally.

Public cloud. Cloud infrastructure is made available to the general public by a ser-
vice provider. These services are free or offered on a pay-per-use model. It may
be owned and managed by a business, academic, or government organization,
or some combination of these. It exists on the premises of the cloud provider.

Managed by organization

3.5 Cloud Computing

Packaged Infrastructure as a Platform as a Software as a
Software Service Service Service
A
Applications Applications Py _5 Applications Applications
-
c g8
2 s
Data I\ Data [Data Data
= =0
S \/
Runtime % Runtime Runtime Runtime
o
(]
&
Middleware S Middleware Middleware f Middleware
=
@
Operating l Operating Operating 2 Operating
System System System g_ System
>
o]
Virtualization Virtualization ? Virtualization E’ Virtualization
3 =
Servers Servers g Servers Servers
= f
o]
©
Storage Storage > Storage Storage
=
Networking Networking * Networking Networking

Figure 3.14 Differences between packaged software, laaS, PaaS, and SaaS.

Generally, public cloud service providers such as Amazon AWS, Microsoft, and
Google own and operate the infrastructure and offer access only via the Internet
(direct connectivity is not offered).

Hybrid cloud. Cloud infrastructure is a composition of two or more distinct cloud
infrastructures (private, community, or public) that remain unique entities, but
are bound together by standardized or proprietary technology, offering the ben-
efits of multiple deployment models.

3.5.1 Benefits and Risks of Cloud Computing

Cloud computing offers a number of distinct benefits to companies compared to

m

ore traditional approaches:

Cost-reduction. Cloud computing allows organizations to avoid the up-front capital
expenditure associated with expensive servers, software licenses, and I'T person-
nel, shifting this responsibility to the cloud provider. This allows smaller firms to
have access to powerful computing infrastructure that they might otherwise not
have been able to afford. Moreover, organizations only pay for the computing
facilities they use rather than pay regardless of whether or not the facilities are
being used to full capacity.

Managed by provider

127

128

Chapter 3 Database Architectures and the Web

.

.

Scalability/Agility. Provisioning-on-demand enables organizations to set up the
resources they require and remove unwanted resources on an as-needed basis.
When a project is funded, the organization initiates the service, and when the
project terminates the resources can be relinquished. This supports business
growth without requiring expensive changes to an organization’s existing IT
systems. This is also known as elasticity and is behind Amazon’s name Elastic
Computing Cloud (EC2).

Improved security. Security can be as good as or even better than in-house systems,
because cloud providers can devote resources to solving security issues that many
organizations cannot afford. The decentralization of data can also provide increases
in security, since not all of an organization’s data is stored in one place. Moreover,
many smaller organizations do not have the resources needed to manage audit
and certification processes for internal data centers. Cloud providers that address
compliance standards such as Sarbanes-Oxley, the Payment Card Industry Data
Security Standard (PCI DSS), and Health Insurance Portability and Accountability
Act (HIPAA) can help organizations address regulatory and compliance processes.

Improved reliability. Again, with devoted resources a cloud provider can focus on
increasing the reliability of their systems. The provider can give 24/7 support and
high-level computing for all their clients at once, rather than each client requiring
its own dedicated in-house staff. This leads to a more redundant and safer system.

Access to new technologies. Cloud computing can help ensure that organizations have
access to the latest technology, including access to hardware, software, and IT
functionality that would otherwise be too expensive to buy.

Faster development. Cloud computing platforms provide many of the core services
that might normally be built in-house. These services, plus templates and other
tools, can significantly accelerate the development cycle.

Large-scale prototyping/load testing. Cloud computing makes large scale prototyping
and load testing much easier. It would be possible to spawn 1,000 servers in the
cloud to load test an application and then release them as soon as the tests were
completed, which would be extremely difficult and expensive with in-house servers.

More flexible working practices. Cloud computing allows staff to work more flexibly.
Staff can access files using Web-enabled devices such as laptops, netbooks and
smartphones. The ability to simultaneously share documents and other files over
the Internet can also help support global collaboration and knowledge sharing
as well as group decision making.

Increased competitiveness. Delegating commodity infrastructure and services allows
organizations to focus on their core competencies and further develop capabili-
ties that can differentiate their organizations in their respective business markets,
thereby increasing competitiveness.

As well as benefits, cloud computing also presents some risks to organizations such as:

Network dependency. Perhaps the most obvious drawback to cloud computing
is its dependency on the network. Power outages and service interruptions
will prevent access to the cloud facilities. In addition, cloud computing is also
susceptible to simple bandwidth issues, for example, at peak hours of demand.
If the cloud provider’s servers are being strained at peak hours, both the per-
formance and availability of its services will sufter. While many cloud providers
will have the redundancy to handle their peak load, there is always the risk
of unforeseen events, server failures, or outside attack; any of which would
threaten client access.

3.5 Cloud Computing 129

« System dependency. An organization may be highly dependent on the availability
and reliability of the cloud provider’s systems. Should the provider fail to provide
adequate disaster recovery, the result could be catastrophic for the organization.

« Cloud provider dependency. 1deally, the cloud provider will never go broke or get
acquired by a larger company. If this were to happen, it is possible that the service
would suddenly terminate and organizations need to ensure they are protected
against such an eventuality.

« Lack of control. By committing data to the systems managed by a cloud provider,
organizations may no longer be in full control of this data and cannot deploy
the technical and organisational measures necessary to safeguard the data. As a
result, the following problems may arise:

- Lack of availability. 1f the cloud provider relies on proprietary technology, it may
prove difficult for an organization to shift data and documents between different
cloud-based systems (data portability) or to exchange information with applica-
tions that use cloud services managed by difterent providers (interoperability).

— Lack of integrity. A cloud is made up of shared systems and infrastructures.
Cloud providers process personal data coming from a wide range of data
subjects and organisations and it is possible that conflicting interests and/or
different objectives might arise.

— Lack of confidentiality. Data being processed in the cloud may be subject to
requests from law enforcement agencies. There is a risk that data could be
disclosed to (foreign) law enforcement agencies without a valid legal basis and
thus a breach of law could occur.

— Lack of intervenability. Due to the complexity and dynamics of the outsourcing
chain, the cloud service offered by one provider might be produced by combin-
ing services from a range of other providers, which may be dynamically added
or removed during the duration of the organization’s contract. In addition, a
cloud provider may not provide the necessary measures and tools to safeguard
organizational data or an individual’s personal data in terms of, e.g., access,
deletion, or correction of data.

— Lack of isolation. A cloud provider may use its physical control over data from
different clients to link personal data. If administrators are facilitated with
sufficiently privileged access rights, they could link information from different
clients.

« Lack of information on processing (transparency). Insufficient information about a
cloud service’s processing operations poses a risk to data controllers as well as to
data subjects because they might not be aware of potential threats and risks and
thus cannot take measures they deem appropriate. Some potential threats may
arise from the data controller not knowing that:

- Chain processing is taking place involving multiple processors and subcon-
tractors.

- Personal data is processed in different geographic locations. This impacts
directly on the law applicable to any data protection disputes that may arise
between user and provider.

- Personal data is transferred to third countries outside the organization’s con-
trol. Third countries may not provide an adequate level of data protection
and transfers may not be safeguarded by appropriate measures (e.g., standard
contractual clauses or binding corporate rules) and thus may be illegal.

130

Chapter 3 Database Architectures and the Web

3.5.2 Cloud-Based Database Solutions

As a type of Saa$, cloud-based database solutions fall into two basic categories: Data
as a Service (DaaS) and Database as a Service (DBaaS$). The key difference between
the two is mainly how the data is managed:

+ Daa$. Daas offers the ability to define data in the cloud and subsequently query
that data on demand. Unlike traditional database solutions, DaaS does not imple-
ment typical DBMS interfaces such as SQL (see Chapter 6). Instead, the data is
accessed via a common set of APIs. DaaS enables any organization with valuable
data to create new revenue lines based on data they already own. Examples of
DaaS are Urban Mapping, a geography data service, which provides data for cus-
tomers to embed into their own Web sites and applications; Xignite, which makes
financial data available to customers; and Hoovers, a Dun & Bradstreet company,
which provides business data on various organizations.

« DBaaS. DBaaS offers full database functionality to application developers. In DBaaS,
a management layer is responsible for the continuous monitoring and configuring
of the database to achieve optimized scaling, high availability, multi-tenancy (that
is, serving multiple client organizations), and effective resource allocation in the
cloud, thereby sparing the developer from ongoing database administration tasks.
Database as a Service architectures support the following necessary capabilities:

- Consumer-based provisioning and management of database instances using
on-demand, self-service mechanisms;

- Automated monitoring of and compliance with provider-defined service defini-
tions, attributes and quality of service levels;

- Fine-grained metering of database usage enabling show-back reporting or
charge-back functionality for each individual consumer.

There are a number of architectural issues associated with DBaaS to do with how
one organization’s data is isolated from other organizations’ data. We consider the
following options:

+ Separate servers

+ Shared server, separate database server process
- Shared database server, separate databases

« Shared database, separate schema

+ Shared database, shared schema

Separate servers architecture

With the separate server architecture, each tenant has a hosted server machine that
only serves their database. This architecture may be appropriate for organizations
who require a high degree of isolation, have large databases, a large number of
users, or who have very specific performance requirements. This approach tends to
lead to higher costs for maintaining equipment and backing up tenant data. The
architecture is illustrated in Figure 3.15.

Shared server, separate database server process architecture

With this architecture, each tenant has their own database, however, several tenants
share a single server machine, each with their own server process. This architecture

3.5 Cloud Computing

Database for
Tenant B

Database for
Tenant A

Tenant A Users Tenant B Users

Figure 3.15 Multi-tenant cloud database—separate servers architecture.

represents a common virtualization environment. The resources on a given server
machine are subdivided for each tenant. Each virtualized environment reserves its
own memory and disk resources, and is unable to share unused resources with other
virtualized environments. With this approach, memory and storage may become
an issue as each tenant has their own database files and server process. Moreover,
performance may be an issue as tenants share the same server although the cloud
provider can reduce the risk of this by allocating only a small number of tenants to
each server. Security is not an issue because tenants are completely isolated from
each other. This architecture is illustrated in Figure 3.16.

Shared database server, separate databases

With this architecture, each tenant has their own separate database but shares a sin-
gle database server (and single server process) with all other tenants. An improve-
ment over the previous approach is that the single database server process can
share resources such as database cache effectively between tenants, supporting bet-
ter utilization of machine resources. This architecture is illustrated in Figure 3.17.

Shared database, separate schema architecture

With this architecture, there is a single shared database server and each tenant has
its data grouped into a schema created specifically for the tenant. The DBMS must

131

132 Chapter 3

Figure 3.16
Multi-tenant
cloud database—
shared server,
separate database
server process
architecture

Figure 3.17
Multi-tenant
cloud database—
shared DBMS
server, separate
databases.

Database Architectures and the Web

Database
Server Process

- =l
=
e—

Database

Server Process Database fc

Tenant A Users

Tenant A Users

E“‘

Tenant B Users

Tenant B Users

3.5 Cloud Computing

Schema for Tenant A

Database

Schema for Tenant B

Tenant A Users Tenant B Users

Figure 3.18 Multi-tenant cloud database—shared database, separate schema architecture.

have a permission structure to ensure that users only have access to the data to
which they are entitled. This architecture is illustrated in Figure 3.18.

Shared database, shared schema architecture

With this architecture, there is a single shared database server and each tenant has its
data grouped into a single shared schema. Each database table must have a column
used to identify the owner of the row. Any application accessing the row must refer
to this column in every query to ensure that one tenant is not able to see another
tenant’s data. This approach has the lowest hardware and backup costs, because
it supports the largest number of tenants per database server. However, because
multiple tenants share the same database tables, this approach may incur additional
development effort in security, to ensure that tenants can never access other tenants’
data. This approach is appropriate when it is important that the application must
serve a large number of tenants with a small number of servers, and prospective
customers are willing to surrender data isolation in exchange for the lower costs that
this approach makes possible. This architecture is illustrated in Figure 3.19.

133

134 Chapter 3 Database Architectures and the Web

!

il

Database

Single Schema for
Tenants A and B

Tenant A Users Tenant B Users

Figure 3.19 Multi-tenant cloud database—shared schema architecture.

3.6 Components of a DBMS

-,

DBMSs are highly complex and sophisticated pieces of software that aim to provide
the services discussed in Section 2.4. It is not possible to generalize the component
structure of a DBMS, as it varies greatly from system to system. However, it is use-
ful when trying to understand database systems to try to view the components and
the relationships between them. In this section, we present a possible architecture
for a DBMS. We examine the architecture of the Oracle DBMS in the next section.

A DBMS is partitioned into several software components (or modules), each of
which is assigned a specific operation. As stated previously, some of the functions
of the DBMS are supported by the underlying operating system. However, the
operating system provides only basic services and the DBMS must be built on top
of it. Thus, the design of a DBMS must take into account the interface between the
DBMS and the operating system.

The major software components in a DBMS environment are depicted in
Figure 3.20. This diagram shows how the DBMS interfaces with other software
components, such as user queries and access methods (file management techniques
for storing and retrieving data records). We will provide an overview of file
organizations and access methods in Appendix F. For a more comprehensive
treatment, the interested reader is referred to Teorey and Fry (1982), Weiderhold
(1983), Smith and Barnes (1987), and Ullman (1988).

3.6 Components of a DBMS

Programmers Users DBA
Application | Database
programs QU schema

DBMS \ / \ 4 \ 4
DML — Query D)DJL
preprocessor processor compiler
Program m Database > Catalog
object code manager manager
Access D File
methods manager
System
buffers
Database
and

system catalog

Figure 3.20 shows the following components:

Query processor. This is a major DBMS component that transforms queries into
a series of low-level instructions directed to the database manager. We discuss
query processing in Chapter 23.

Database manager (DM). The DM interfaces with user-submitted application pro-
grams and queries. The DM accepts queries and examines the external and con-
ceptual schemas to determine what conceptual records are required to satisfy the
request. The DM then places a call to the file manager to perform the request.
The components of the DM are shown in Figure 3.21.

File manager. The file manager manipulates the underlying storage files and man-
ages the allocation of storage space on disk. It establishes and maintains the list
of structures and indexes defined in the internal schema. If hashed files are used,
it calls on the hashing functions to generate record addresses. However, the file
manager does not directly manage the physical input and output of data. Rather,
it passes the requests on to the appropriate access methods, which either read
data from or write data into the system buffer (or cache).

DML preprocessor. This module converts DML statements embedded in an appli-
cation program into standard function calls in the host language. The DML
preprocessor must interact with the query processor to generate the appropriate
code.

DDL compiler. The DDL compiler converts DDL statements into a set of tables
containing metadata. These tables are then stored in the system catalog while
control information is stored in data file headers.

135

Figure 3.20
Major
components
of a DBMS.

136 Chapter 3 Database Architectures and the Web

Figure 3.21
c ¢ Program Query Catalog
omponents object code processor manager
of a database
manager. 1
Database v
manager I
Authorization
control

!

Integrity > Command | Query

checker processor optimizer

! {

Transaction = Scheduler

manager
Data Buffer —p Recovery
manager manager manager

Access —> File

methods manager
System
buffers
Database
and

system catalog

« Catalog manager. The catalog manager manages access to and maintains the sys-
tem catalog. The system catalog is accessed by most DBMS components.

The major software components for the database manager are as follows:
« Authorization control. This module confirms whether the user has the necessary
authorization to carry out the required operation.

« Command processor. Once the system has confirmed that the user has authority to
carry out the operation, control is passed to the command processor.

« Integrity checker. For an operation that changes the database, the integrity checker
checks whether the requested operation satisfies all necessary integrity con-
straints (such as key constraints).

* Query optimizer. This module determines an optimal strategy for the query execu-
tion. We discuss query optimization in Chapter 23.

3.7 Oracle Architecture

« Transaction manager. This module performs the required processing of operations
that it receives from transactions.

+ Scheduler. This module is responsible for ensuring that concurrent operations on
the database proceed without conflicting with one another. It controls the relative
order in which transaction operations are executed.

* Recovery manager. This module ensures that the database remains in a consistent
state in the presence of failures. It is responsible for transaction commit and abort.

* Buffer manager. This module is responsible for the transfer of data between main
memory and secondary storage, such as disk and tape. The recovery manager
and the buffer manager are sometimes referred to collectively as the data man-
ager. The buffer manager is sometimes known as the cache manager.

We discuss the last four modules in Chapter 22. In addition to the previously men-
tioned modules, several other data structures are required as part of the physical-
level implementation. These structures include data and index files and the system
catalog. An attempt has been made to standardize DBMSs, and a reference model
was proposed by the Database Architecture Framework Task Group (DAFTG,
1986). The purpose of this reference model was to define a conceptual framework
aiming to divide standardization attempts into manageable pieces and to show at a
very broad level how these pieces could be interrelated.

= 3.7 Oracle Architecture

-

Oracle is based on the client-server architecture examined in Section 3.1.3. The
Oracle server consists of the database (the raw data, including log and control files)
and the instance (the processes and system memory on the server that provide access
to the database). An instance can connect to only one database. The database con-
sists of a logical structure, such as the database schema, and a physical structure, con-
taining the files that make up an Oracle database. We now discuss the logical and
physical structure of the database and the system processes in more detail.

3.7.1 Oracle’s Logical Database Structure

At the logical level, Oracle maintains tablespaces, schemas, and data blocks and extents/
segments.

Tablespaces

An Oracle database is divided into logical storage units called tablespaces. A
tablespace is used to group related logical structures together. For example,
tablespaces commonly group all the application’s objects to simplify some admin-
istrative operations.

Every Oracle database contains a tablespace named SYSTEM, which is created
automatically when the database is created. The SYSTEM tablespace always con-
tains the system catalog tables (called the data dictionary in Oracle) for the entire
database. A small database might need only the SYSTEM tablespace; however, it is
recommended that at least one additional tablespace is created to store user data
separate from the data dictionary, thereby reducing contention among dictionary
objects and schema objects for the same datafiles (see Figure 19.11). Figure 3.22

137

138

Chapter 3 Database Architectures and the Web

Oracle Database Datafiles

DATA1.ORA DATA2.0RA
1 Mb 1 Mb

DATA3.0RA ;
100 Mb ;

SYSTEM

b \
g cluster \
S table *

\

index

table

ilE|E

/! index

Figure 3.22 Relationship between an Oracle database, tablespaces, and datafiles.

illustrates an Oracle database consisting of the SYSTEM tablespace and a USER_
DATA tablespace.

A new tablespace can be created using the CREATE TABLESPACE command,
for example:

CREATE TABLESPACE user_data
DATAFILE ‘DATA3.ORA’ SIZE 100K
EXTENT MANAGEMENT LOCAL
SEGMENT SPACE MANAGEMENT AUTO;

A table can then be associated with a specific tablespace using the CREATE TABLE
or ALTER TABLE statement, for example:

CREATE TABLE PropertyForRent (propertyNo VARCHAR2(5) NOT NULL, . . .)
TABLESPACE user_data;

If no tablespace is specified when creating a new table, the default tablespace associ-
ated with the user when the user account was set up is used.

Users, schemas, and schema objects

A user (sometimes called a username) is a name defined in the database that can
connect to, and access, objects. A schema is a named collection of schema objects,
such as tables, views, indexes, clusters, and procedures, associated with a particular
user. Schemas and users help DBAs manage database security.

3.7 Oracle Architecture

To access a database, a user must run a database application (such as Oracle
Forms or SQL*Plus) and connect using a username defined in the database. When
a database user is created, a corresponding schema of the same name is created
for the user. By default, once a user connects to a database, the user has access to
all objects contained in the corresponding schema. As a user is associated only with
the schema of the same name; the terms “user” and “schema” are often used inter-
changeably. (Note that there is no relationship between a tablespace and a schema:
Objects in the same schema can be in different tablespaces, and a tablespace can
hold objects from different schemas.)

Data blocks, extents, and segments

The data block is the smallest unit of storage that Oracle can use or allocate. One
data block corresponds to a specific number of bytes of physical disk space. The
data block size can be set for each Oracle database when it is created. This data
block size should be a multiple of the operating system’s block size (within the
system’s maximum operating limit) to avoid unnecessary I/O. A data block has the
following structure:

* Header. contains general information such as block address and type of segment.
« Table directory. contains information about the tables that have data in the data block.
 Row directory. contains information about the rows in the data block.

* Row data. contains the actual rows of table data. A row can span blocks.

« Free space. allocated for the insertion of new rows and updates to rows that require
additional space. As of Oracle§i, Oracle can manage free space automatically,
although there is an option to manage it manually.

We show how to estimate the size of an Oracle table using these components in
Appendix J on the Web site for this book. The next level of logical database space
is called an extent. An extent is a specific number of contiguous data blocks allo-
cated for storing a specific type of information. The level above an extent is called
a segment. A segment is a set of extents allocated for a certain logical structure. For
example, each table’s data is stored in its own data segment, and each index’s data
is stored in its own index segment. Figure 3.23 shows the relationship between data

2K data block —»| 2K 2K [2r— 2K
2K oK | oK {2kt
9y
2K ® 2K | 2K | 2K Extent
8K extent _— S ;4?
— -—
made up of 4 2K X oK | 2K | 2K
data blocks Segment
/V 32K
32K segrr;ér-wt- """""

made up of an 8K
and 24K extent

Figure 3.23 Relationship between Oracle data blocks, extents, and segments.

139

140

Chapter 3 Database Architectures and the Web

blocks, extents, and segments. Oracle dynamically allocates space when the exist-
ing extents of a segment become full. Because extents are allocated as needed, the
extents of a segment may or may not be contiguous on disk.

3.7.2 Oracle’s Physical Database Structure

The main physical database structures in Oracle are datafiles, redo log files, and
control files.

Datafiles

Every Oracle database has one or more physical datafiles. The data of logical data-
base structures (such as tables and indexes) is physically stored in these datafiles.
As shown in Figure 3.16, one or more datafiles form a tablespace. The simplest
Oracle database would have one tablespace and one datafile. A more complex
database might have four tablespaces, each consisting of two datafiles, giving a
total of eight datafiles.

Redo log files

Every Oracle database has a set of two or more redo log files that record all changes
made to data for recovery purposes. Should a failure prevent modified data from
being permanently written to the datafiles, the changes can be obtained from the
redo log, thus preventing work from being lost. We discuss recovery in detail in
Section 22.3.

Control files

Every Oracle database has a control file that contains a list of all the other files that
make up the database, such as the datafiles and redo log files. For added protec-
tion, it is recommended that the control file should be multiplexed (multiple copies
may be written to multiple devices). Similarly, it may be advisable to multiplex the
redo log files as well.

The Oracle instance

The Oracle instance consists of the Oracle processes and shared memory required
to access information in the database. The instance is made up of the Oracle
background processes, the user processes, and the shared memory used by these
processes, as illustrated in Figure 3.18. Among other things, Oracle uses shared
memory for caching data and indexes as well as storing shared program code.
Shared memory is broken into various memory structures, of which the basic ones are
the System Global Area (SGA) and the Program Global Area (PGA).

« System global area. The SGA is an area of shared memory that is used to store
data and control information for one Oracle instance. The SGA is allocated when
the Oracle instance starts and deallocated when the Oracle instance shuts down.
The information in the SGA consists of the following memory structures, each of
which has a fixed size and is created at instance startup:

3.7 Oracle Architecture

— Database buffer cache. This contains the most recently used data blocks from the
database. These blocks can contain modified data that has not yet been written
to disk (dirty blocks), blocks that have not been modified, or blocks that have
been written to disk since modification (clean blocks). By storing the most recently
used blocks, the most active buffers stay in memory to reduce I/O and improve
performance. We discuss buffer management policies in Section 22.3.2.

— Redo log buffer. This contains the redo log file entries, which are used for recov-
ery purposes (see Section 22.3). The background process LGWR (explained
shortly) writes the redo log buffer to the active online redo log file on disk.

— Shared pool. This contains the shared memory structures, such as shared SQL
areas in the library cache and internal information in the data dictionary. The
shared SQL areas contain parse trees and execution plans for the SQL queries. If
multiple applications issue the same SQL statement, each can access the shared
SQL area to reduce the amount of memory needed and to reduce the processing
time used for parsing and execution. We discuss query processing in Chapter 23.

— Large pool. This is an optional memory area intended for large memory alloca-
tions (eg. for buffers for Recovery Manager (RMAN) I/O slaves).

— Java pool. This area stores all session-specific Java code and data within the Java
Virtual Machine (JVM).

— Streams pool. This area stores buffered queue messages and provides memory
tor Oracle Streams processes. Oracle Streams allows information flow (such as
database events and database changes) to be managed and potentially propa-
gated to other databases.

— Fixed SGA. This is an internal housekeeping area that contains various data
such as general information about the state of the database and the Oracle
instance and information communicated between Oracle processes, such as
information about locks.

« Program global area. The PGA is an area of shared memory that is used to store
data and control information for an Oracle process. The PGA is created by Oracle
Database when an Oracle process is started. One PGA exists for each server pro-
cess and background process. The size and content of the PGA depends on the
Oracle server options installed.

« Client processes. Each client process represents a user’s connection to the Oracle
server (for example, through SQL*Plus or an Oracle Forms application). The
user process manipulates the user’s input, communicates with the Oracle server
process, displays the information requested by the user and, if required, pro-
cesses this information into a more useful form.

Oracle processes. Oracle (server) processes perform functions for users. Oracle pro-
cesses can be split into two groups: server processes (which handle requests from
connected user processes) and background processes (which perform asynchronous
I/O and provide increased parallelism for improved performance and reliability).
From Figure 3.24, we have the following background processes:

— Database Writer (DBWR). The DBWR process is responsible for writing the mod-
ified (dirty) blocks from the buffer cache in the SGA to datafiles on disk. An
Oracle instance can have up to ten DBWR processes, named DBWO to DBW9,
to handle I/O to multiple datafiles. Oracle employs a technique known as
write-ahead logging (see Section 22.3.4), which means that the DBWR process
performs batched writes whenever the buffers need to be freed, not necessarily
at the point the transaction commits.

141

142

Chapter 3 Database Architectures and the Web

Instance

System Global Area (SGA)

HENEEE
f

Shared Pool Large Pool
Library Cache
Shared SQL Area | [Privale 0o m, o®
ISELECTe FROM; | |SQL Area O . y
! employees || |(Shared O o O
il . o0 o]
— | | Server Only) n O o
Data Server| | Other | [Reserved Response Request
Dictionary| |Result Pool Queue Ousus
Cache Cache
Database]
Fixed J St
Buffer Cache Slée/-\ PE:J\::: ';G:)aor;ﬁs

v
PGA |

v

Free Memory
1/0 Buffer Area
UGA

s [rion
[
[0
o [wor
[
s [onen]

Background
Processes

T T
SQL Work Areas Server
1 1

|DBWn | | CKPT | |LGWR | | ARCn | |RVWR|

Process

T
Session Memory |Private SQL Area
1

=

___Nl__ |Database| ~
: Data VN
: Files
Client :
Process T
I :

Figure 3.24 The Oracle architecture (from the Oracle documentation set).

— Log Writer (LGWR). The LGWR process is responsible for writing data from the

log bufter to the redo log.

— Checkpoint (CKPT). A checkpoint is an event in which all modified database
buffers are written to the datafiles by the DBWR (see Section 22.3.2). The
CKPT process is responsible for telling the DBWR process to perform a
checkpoint and to update all the datafiles and control files for the database
to indicate the most recent checkpoint. The CKPT process is optional and, if
omitted, these responsibilities are assumed by the LGWR process.

— System Monitor (SMON). The SMON process is responsible for crash recovery
when the instance is started following a failure. This includes recovering trans-
actions that have died because of a system crash. SMON also defragments the
database by merging free extents within the datafiles.

3.7 Oracle Architecture

— Process Monitor (PMON). The PMON process is responsible for tracking user
processes that access the database and recovering them following a crash. This
includes cleaning up any resources left behind (such as memory) and releasing
any locks held by the failed process.

— Archiver (ARCH). The ARCH process is responsible for copying the online redo
log files to archival storage when they become full. The system can be config-
ured to run up to 10 ARCH processes, named ARCO to ARC9. The additional
archive processes are started by the LWGR when the load dictates.

— Recoverer (RECO). The RECO process is responsible for cleaning up failed or
suspended distributed transactions (see Section 25.4).

— Flashback Writer or Recovery Writer (RVIWR). When flashback is enabled or when
there are guaranteed restore points, the RVWR process writes flashback data to
flashback database logs in the flash recovery area. Flashback tools allow admin-
istrators and users to view and manipulate past states of an Oracle instance’s
data without recovering the database to a fixed point in time.

— Manageability Monitor (MMON). This process performs many tasks related to the
Automatic Workload Repository (AWR). AWR is a repository of historical perfor-
mance data that includes cumulative statistics for the system, sessions, individual
SQL statements, segments, and services. Among other things, by default, the
MMON process gathers statistics every hour and creates an AWR snapshot.

— Manageability Monitor Lite (MMNL). This process writes statistics from the Active
Session History (ASH) buffer in the SGA to disk. MMNL writes to disk when the
ASH buffer is full.

In the previous descriptions we have used the term “process” generically. Nowadays,
some systems implement processes as threads.

Example of how these processes interact

The following example illustrates an Oracle configuration with the server process
running on one machine and a user process connecting to the server from a sepa-
rate machine. Oracle uses a communication mechanism called Oracle Net Services
to allow processes on different physical machines to communicate with each other.
Oracle Net Services supports a variety of network protocols, such as TCP/IP. The
services can also perform network protocol interchanges, allowing clients that use
one protocol to interact with a database server using another protocol.

(1) The client workstation runs an application in a user process. The client appli-
cation attempts to establish a connection to the server using the Oracle Net
Services driver.

(2) The server detects the connection request from the application and creates a
(dedicated) server process on behalf of the user process.

(3) The user executes an SQL statement to change a row of a table and commits
the transaction.

(4) The server process receives the statement and checks the shared pool for any
shared SQL area that contains an identical SQL statement. If a shared SQL
area is found, the server process checks the user’s access privileges to the
requested data and the previously existing shared SQL area is used to process

143

144 Chapter 3 Database Architectures and the Web

the statement; if not, a new shared SQL area is allocated for the statement so
that it can be parsed and processed.

5) The server process retrieves any necessary data values from the actual datafile
P y ry
(table) or those stored in the SGA.

(6) The server process modifies data in the SGA. The DBWR process writes modi-
fied blocks permanently to disk when doing so is efficient. Because the transac-
tion committed, the LGWR process immediately records the transaction in the
online redo log file.

(7) The server process sends a success/failure message across the network to the
application.

(8) During this time, the other background processes run, watching for conditions
that require intervention. In addition, the Oracle server manages other users’
transactions and prevents contention between transactions that request the
same data.

Chapter Summary

Client-server architecture refers to the way in which software components interact. There is a client process
that requires some resource, and a server that provides the resource. In the two-tier model, the client handles
the user interface and business processing logic and the server handles the database functionality. In the Web
environment, the traditional two-tier model has been replaced by a three-tier model, consisting of a user inter-
face layer (the client), a business logic and data processing layer (the application server), and a DBMS (the
database server), distributed over different machines.

The three-tier architecture can be extended to n tiers, will additional tiers added to provide more flexibility and
scalability.

Middleware is computer software that connects software components or applications. Middleware types
include RPC (synchronous and asynchronous), publish/subscribe, message-oriented middleware (MOM), object-
request brokers (ORB), and database middleware.

A Web service is a software system designed to support interoperable machine-to-machine interaction over a
network. They are based on standards such as XML, SOAP, WSDL, and UDDI.

Service-Oriented Architecture(SOA) is a business-centric software architecture for building applications
that implement business processes as sets of services published at a granularity relevant to the service consumer.

Cloud computing is a model for enabling ubiquitous, convenient, on-demand network access to a shared
pool of configurable computing resources (e.g,, networks, servers, storage, applications, and services) that can be
rapidly provisioned and released with minimal management effort or service provider interaction. The three main
service models are: Software as a Service (SaaS), Platform as a Service (PaaS), and Infrastructure as a Service
(IaaS). Cloud-based database solutions fall into two basic categories: Data as a Service (DaaS) and Database as a
Service (DBaa$).

A Transaction Processing (TP) Monitor is a program that controls data transfer between clients and
servers in order to provide a consistent environment, particularly for online transaction processing (OLTP).
The advantages include transaction routing, distributed transactions, load balancing, funneling, and increased
reliability.

Exercises

Review Questions

3.1 What is meant by the term ‘client—server architecture’ and what are the advantages of this
approach? Compare the client—server architecture with two other architectures.

3.2 Compare and contrast the two-tier client—server architecture for traditional DBMSs with the
three-tier client—server architecture. Why is the latter architecture more appropriate for the
Web?

3.3 How is an application server different from a file server?

3.4 What is a data warehouse? How is it different from an OLTP system?

3.5 What is a TP Monitor? What advantages does a TP Monitor bring to an OLTP environment?
3.6 Describe the features of a distributed database management system (DDBMS).

3.7 What technologies and standards are used to develop Web services and how do they relate
to each other?

3.8 What is a service-oriented architecture?
3.9 Describe the functions of a database manager?
3.10 What is Cloud computing?
3.11 Discuss the five essential characteristics of cloud computing.
3.12 Discuss the three main service models of cloud computing.
3.13 Compare and contrast the four main deployment models for the cloud.
3.14 What is the difference between Data as a service (DaaS) and Database as a service (DBaaS)?
3.15 Discuss the different architectural models for Database as a service.
3.16 Describe the main components in a DBMS.

3.17 Describe the internal architecture of Oracle.

Exercises

3.18 Examine the documentation sets of Microsoft SOL Server, Oracle, and IBM's DB2 system to
identify their support for the following:
(a) client—server architecture
(b) Web services
(c) service-oriented architecture

3.19 Search the Web for a number of Web services other than the ones discussed in Section 3.2.
What do these services have in common? Identify whether the services access a database.

3.20 Based on the Oracle architecture described in section 3.7, examine the structure of two
other DBMSs of your choice. Describe features common to all three DMBSs.

145

PART

The Relational Model
and Languages

Chapter
Chapter

Chapter
Chapter
Chapter
Chapter

%, }

N 0O N &

The Relational Model

Relational Algebra and Relational
Calculus

SQL: Data Manipulation
SQL: Data Definition
Advanced SQL

Object-Relational DBMSs

149

167
191
233
271
291

147

CHAPTER

The Relational Model

Chapter Objectives
In this chapter you will learn:

* The origins of the relational model.

* The terminology of the relational model.

* How tables are used to represent data.

* The connection between mathematical relations and relations in the relational model.
* Properties of database relations.

* How to identify candidate, primary, alternate, and foreign keys.

* The meaning of entity integrity and referential integrity.

* The purpose and advantages of views in relational systems.

The Relational Database Management System (RDBMS) has become the domi-
nant data-processing software in use today, with an estimated total software
revenue worldwide of US$24 billion in 2011 and estimated to grow to about
US$37 billion by 2016. This software represents the second generation of DBMSs
and is based on the relational data model proposed by E. F. Codd (1970). In the
relational model, all data is logically structured within relations (tables). Each
relation has a name and is made up of named attributes (columns) of data. Each
tuple (row) contains one value per attribute. A great strength of the relational
model is this simple logical structure. Yet behind this simple structure is a sound
theoretical foundation that is lacking in the first generation of DBMSs (the net-
work and hierarchical DBMSs).

We devote a significant amount of this book to the RDBMS, in recognition
of the importance of these systems. In this chapter, we discuss the terminology
and basic structural concepts of the relational data model. In the next chapter,
we examine the relational languages that can be used for update and data
retrieval.

149

150

Chapter 4 The Relational Model

Structure of this Chapter To put our treatment of the RDBMS into
perspective, in Section 4.1 we provide a brief history of the relational model.
In Section 4.2 we discuss the underlying concepts and terminology of the rela-
tional model. In Section 4.3 we discuss the relational integrity rules, including
entity integrity and referential integrity. In Section 4.4 we introduce the con-
cept of views, which are important features of relational DBMSs, although not a
concept of the relational model per se.

Looking ahead, in Chapters 5-9 we examine SQL (Structured Query
Language), the formal and de facto standard language for RDBMSs, and in
Appendix M we examine QBE (Query-By-Example), another highly popular
visual query language for RDBMSs. In Chapters 16-19 we present a complete
methodology for relational database design. In Chapter 9, we discuss an ex-
tension to relational DBMSs to incorporate object-oriented features, and in
particular examine the object-oriented features of SQL. In Appendix G, we
examine Codd’s twelve rules, which form a yardstick against which RDBMS
products can be identified. The examples in this chapter are drawn from
the DreamHome case study, which is described in detail in Section 11.4 and
Appendix A.

4.1 Brief History of the Relational Model

[

The relational model was first proposed by E. F. Codd in his seminal paper “A
relational model of data for large shared data banks” (Codd, 1970). This paper is
now generally accepted as a landmark in database systems, although a set-oriented
model had been proposed previously (Childs, 1968). The relational model’s objec-
tives were specified as follows:

« To allow a high degree of data independence. Application programs must not
be affected by modifications to the internal data representation, particularly by
changes to file organizations, record orderings, or access paths.

« To provide substantial grounds for dealing with data semantics, consistency,
and redundancy problems. In particular, Codd’s paper introduced the concept
of normalized relations, that is, relations that have no repeating groups. (The
process of normalization is discussed in 14 and 15.)

+ To enable the expansion of set-oriented data manipulation languages.

Although interest in the relational model came from several directions, the most
significant research may be attributed to three projects with rather different per-
spectives. The first of these, at IBM’s San José Research Laboratory in California,
was the prototype relational DBMS System R, which was developed during the late
1970s (Astrahan et al., 1976). This project was designed to prove the practicality
of the relational model by providing an implementation of its data structures

4.1 Brief History of the Relational Model

and operations. It also proved to be an excellent source of information about
implementation concerns such as transaction management, concurrency control,
recovery techniques, query optimization, data security and integrity, human fac-
tors, and user interfaces, and led to the publication of many research papers and
to the development of other prototypes. In particular, the System R project led to
two major developments:

- the development of a structured query language called SQL, which has since
become the formal International Organization for Standardization (ISO) and de
facto standard language for relational DBMSs;

« the production of various commercial relational DBMS products during the late
1970s and the 1980s: for example, DB2 and SQL/DS from IBM and Oracle from
Oracle Corporation.

The second project to have been significant in the development of the relational
model was the INGRES (Interactive Graphics Retrieval System) project at the
University of California at Berkeley, which was active at about the same time as
the System R project. The INGRES project involved the development of a pro-
totype RDBMS, with the research concentrating on the same overall objectives
as the System R project. This research led to an academic version of INGRES,
which contributed to the general appreciation of relational concepts, and spawned
the commercial products INGRES from Relational Technology Inc. (now Actian
Corporation) and the Intelligent Database Machine from Britton Lee Inc.

The third project was the Peterlee Relational Test Vehicle at the IBM UK
Scientific Centre in Peterlee (Todd, 1976). This project had a more theoretical
orientation than the System R and INGRES projects and was significant, princi-
pally for research into such issues as query processing and optimization as well as
functional extension.

Commercial systems based on the relational model started to appear in the late
1970s and early 1980s. Now there are several hundred RDBMSs for both main-
frame and PC environments, even though many do not strictly adhere to the defi-
nition of the relational model. Examples of PC-based RDBMSs are Office Access
and Visual FoxPro from Microsoft, InterBase from Embarcadero Technologies, and
R:Base from R:Base Technologies.

Owing to the popularity of the relational model, many nonrelational systems now
provide a relational user interface, irrespective of the underlying model. IDMS, the
principal network DBMS, has become CA-IDMS from CA Inc. (formerly Computer
Associates), supporting a relational view of data. Other mainframe DBMSs that
support some relational features are Model 204 from Computer Corporation of
America (a subsidiary of Rocket Software Inc) and Software AG’s ADABAS.

Some extensions to the relational model have also been proposed; for example,
extensions to:

+ capture more closely the meaning of data (for example, Codd, 1979);
« support object-oriented concepts (for example, Stonebraker and Rowe, 1986);
« support deductive capabilities (for example, Gardarin and Valduriez, 1989).

We discuss some of these extensions in Chapters 27-28, as we discuss Object
DBMSs.

151

152 | Chapter 4 The Relational Model

4.2 Terminology

-,

The relational model is based on the mathematical concept of a relation, which is
physically represented as a table. Codd, a trained mathematician, used terminology
taken from mathematics, principally set theory and predicate logic. In this section
we explain the terminology and structural concepts of the relational model.

4.2.1 Relational Data Structure

Relation ‘ A relation is a table with columns and rows.

An RDBMS requires only that the database be perceived by the user as tables.
Note, however, that this perception applies only to the logical structure of the
database: that is, the external and conceptual levels of the ANSI-SPARC archi-
tecture discussed in Section 2.1. It does not apply to the physical structure of the
database, which can be implemented using a variety of storage structures (see
Appendix F).

Attribute ‘ An attribute is a named column of a relation.

In the relational model, relations are used to hold information about the
objects to be represented in the database. A relation is represented as a two-
dimensional table in which the rows of the table correspond to individual records
and the table columns correspond to attributes. Attributes can appear in any
order and the relation will still be the same relation, and therefore will convey
the same meaning.

For example, the information on branch offices is represented by the Branch
relation, with columns for attributes branchNo (the branch number), street, city, and
postcode. Similarly, the information on staff is represented by the Staff relation, with
columns for attributes staffNo (the staff number), fName, IName, position, sex, DOB
(date of birth), salary, and branchNo (the number of the branch the staff member
works at). Figure 4.1 shows instances of the Branch and Staff relations. As you can see
from this example, a column contains values of a single attribute; for example, the
branchNo columns contain only numbers of existing branch offices.

Domain A domain is the set of allowable values for one or more attributes.

Domains are an extremely powerful feature of the relational model. Every attrib-
ute in a relation is defined on a domain. Domains may be distinct for each attribute,
or two or more attributes may be defined on the same domain. Figure 4.2 shows the
domains for some of the attributes of the Branch and Staff relations. Note that at any
given time, typically there will be values in a domain that do not currently appear
as values in the corresponding attribute.

The domain concept is important, because it allows the user to define in a central
place the meaning and source of values that attributes can hold. As a result, more

4.2 Terminology 153

Attributes
Branch
branchNo | street city postcode
s B005 22DeerRd | London |SW14EH -
£< | Boo7 16 Argyll St | Aberdeen | AB2 3SU ©
1 [=
& | | B003 163 Main St | Glasgow | G11 9QX i<
B004 32 Manse Rd | Bristol | BS99 INZ 8
B002 56 Clover Dr | London | NW10 6EU
i
N] Degree)
Primary key Foreign key
Staff
A 4
staffNo | fName | IName | position | sex | DOB salary | branchNo
c SL21 John White | Manager |M | 1-Oct-45 | 30000 |B005
2 J SG37 Ann Beech | Assistant |F 10-Nov-60 | 12000 | B003
§ SG14 David | Ford | Supervisor | M |24-Mar-58 | 18000 | B003
SA9 Mary | Howe [Assistant |[F 19-Feb-70 | 9000 | B007
SG5 Susan | Brand | Manager |F 3-Jun-40 | 24000 | B003
SL41 Julie Lee Assistant | F 13-Jun-65 9000 | B005
Attribute | Domain Name [Meaning Domain Definition

branchNo | BranchNumbers | The set of all possible branch numbers | character: size 4, range B0O01-B999

street StreetNames The set of all street names in Britain | character: size 25

city CityNames The set of all city names in Britain character: size 15

postcode | Postcodes The set of all postcodes in Britain character: size 8

sex Sex The sex of a person character: size 1, value M or F
DOB DatesOfBirth Possible values of staff birth dates date, range from 1-Jan-20,

format dd-mmm-yy

salary Salaries Possible values of staff salaries monetary: 7 digits, range
6000.00-40000.00

information is available to the system when it undertakes the execution of a rela-
tional operation, and operations that are semantically incorrect can be avoided. For
example, it is not sensible to compare a street name with a telephone number, even
though the domain definitions for both these attributes are character strings. On the
other hand, the monthly rental on a property and the number of months a prop-
erty has been leased have difterent domains (the first a monetary value, the second
an integer value), but it is still a legal operation to multiply two values from these
domains. As these two examples illustrate, a complete implementation of domains
is not straightforward, and as a result, many RDBMSs do not support them fully.

Tuple ‘ A tuple is a row of a relation.

The elements of a relation are the rows or tuples in the table. In the Branch rela-
tion, each row contains four values, one for each attribute. Tuples can appear in

Figure 4.1
Instances of the
Branch and Staff
relations.

Figure 4.2
Domains for
some attributes
of the Branch and
Staff relations.

154

Chapter 4 The Relational Model

any order and the relation will still be the same relation, and therefore convey the
same meaning.

The structure of a relation, together with a specification of the domains and any
other restrictions on possible values, is sometimes called its intension, which is usu-
ally fixed, unless the meaning of a relation is changed to include additional attrib-
utes. The tuples are called the extension (or state) of a relation, which changes
over time.

Degree The degree of a relation is the number of attributes it contains.

The Branch relation in Figure 4.1 has four attributes or degree four. This means
that each row of the table is a four-tuple, containing four values. A relation with only
one attribute would have degree one and be called a unary relation or one-tuple.
A relation with two attributes is called binary, one with three attributes is called
ternary, and after that the term n-ary is usually used. The degree of a relation is a
property of the intension of the relation.

Cardinality The cardinality of a relation is the number of tuples it contains.

By contrast, the number of tuples is called the cardinality of the relation and this
changes as tuples are added or deleted. The cardinality is a property of the extension
of the relation and is determined from the particular instance of the relation at any
given moment. Finally, we define a relational database.

A collection of normalized relations with distinct relation
names.

Relational database

A relational database consists of relations that are appropriately structured. We
refer to this appropriateness as normalization. We defer the discussion of normaliza-
tion until Chapters 14 and 15.

Alternative terminology

The terminology for the relational model can be quite confusing. We have intro-
duced two sets of terms. In fact, a third set of terms is sometimes used: a relation
may be referred to as a file, the tuples as records, and the attributes as fields. This
terminology stems from the fact that, physically, the RDBMS may store each rela-
tion in a file. Table 4.1 summarizes the different terms for the relational model.

TABLE 4.1 Altemative terminology for relational model terms.

FORMAL TERMS ALTERNATIVE | ALTERNATIVE 2
Relation Table File
Tuple Row Record

Attribute Column Field

4.2 Terminology

4.2.2 Mathematical Relations

To understand the true meaning of the term relation, we have to review some con-
cepts from mathematics. Suppose that we have two sets, D, and D,, where D, = {2,
4} and D, = {1, 3, 5}. The Cartesian product of these two sets, written D, X D,, is
the set of all ordered pairs such that the first element is a member of D, and the
second element is a member of D,. An alternative way of expressing this is to find
all combinations of elements with the first from D, and the second from D,. In our
case, we have:

D\ X DZ = {(2, 1)5 (2’ 3)’ (27 5)’ (4’ 1)’ (47 3)7 (4’ 5)}

Any subset of this Cartesian product is a relation. For example, we could produce
a relation R such that:

R={2, 1), 1)}

We may specify which ordered pairs will be in the relation by giving some condition
for their selection. For example, if we observe that R includes all those ordered pairs
in which the second element is 1, then we could write R as:

R={(x9y |x€E€D,y€ED,andy =1}

Using these same sets, we could form another relation S in which the first element
is always twice the second. Thus, we could write S as:

S={(9) |x€ED,y €D, andx = 2y}
or, in this instance,
={@2, D}

as there is only one ordered pair in the Cartesian product that satisfies this condi-
tion. We can easily extend the notion of a relation to three sets. Let D, D,, and Dj
be three sets. The Cartesian product D, X D, X Dj; of these three sets is the set of all
ordered triples such that the first element is from D,, the second element is from D,,
and the third element is from D;. Any subset of this Cartesian product is a relation.
For example, suppose we have:

D, = {1, 3} D, = {2, 4} D; = {5, 6}
D, XD, xXD;=1{(1,2,5),(1,2,6),(1,4,5), (1,4, 6), (3,2,5), (3,2,6), (3,4, 5), (3,4,6)}

Any subset of these ordered triples is a relation. We can extend the three sets and

define a general relation on n domains. Let D, D,, . . ., D, be n sets. Their Cartesian
product is defined as:
D) XD,X...XD,=4(d,dp,...,d)|d €ED,d ED,...,d, ED,}

and is usually written as:
n
1D,
=1

Any set of n-tuples from this Cartesian product is a relation on the n sets. Note that
in defining these relations we have to specify the sets, or domains, from which we
choose values.

155

156

Chapter 4 The Relational Model

4.2.3 Database Relations

Applying the previously discussed concepts to databases, we can define a relation
schema.

Relation A named relation defined by a set of attribute and domain name
schema pairs.
Let A, A, ..., A, be attributes with domains D, D,, .. ., D,. Then the set {A;:D,,
Ay:D,, ..., A:D,} is a relation schema. A relation R defined by a relation schema S

is a set of mappings from the attribute names to their corresponding domains.
Thus, relation R is a set of n-tuples:

(Axd,, Ayd,, . .., Ayd) such thatd, €D,,d, €ED,, ..., d, €D,

Each element in the n-tuple consists of an attribute and a value for that attribute.
Normally, when we write out a relation as a table, we list the attribute names as column
headings and write out the tuples as rows having the form (d,, d,, . . ., d,), where each
value is taken from the appropriate domain. In this way, we can think of a relation
in the relational model as any subset of the Cartesian product of the domains of the
attributes. A table is simply a physical representation of such a relation.

In our example, the Branch relation shown in Figure 4.1 has attributes branchNo,
street, city, and postcode, each with its corresponding domain. The Branch relation
is any subset of the Cartesian product of the domains, or any set of four-tuples in
which the first element is from the domain BranchNumbers, the second is from the
domain StreetNames, and so on. One of the four-tuples is:

{(B005, 22 Deer Rd, London, SW1 4EH)}
or more correctly:
{(branchNo: B005, street: 22 Deer Rd, city: London, postcode: SW1 4EH)}

We refer to this as a relation instance. The Branch table is a convenient way of writ-
ing out all the four-tuples that form the relation at a specific moment in time, which
explains why table rows in the relational model are called “tuples”. In the same way
that a relation has a schema, so too does the relational database.

Relational database A set of relation schemas, each with a distinct name.
schema
If R, Ry, . .., R, are a set of relation schemas, then we can write the relational
database schema, or simply relational schema, R, as:
RZ{RDRZ,"',Rn}

4.2.4 Properties of Relations
A relation has the following properties:

+ the relation has a name that is distinct from all other relation names in the rela-
tional schema;

« each cell of the relation contains exactly one atomic (single) value;

4.2 Terminology

« each attribute has a distinct name;

« the values of an attribute are all from the same domain;
« each tuple is distinct; there are no duplicate tuples;

+ the order of attributes has no significance;

« the order of tuples has no significance, theoretically. (However, in practice, the
order may affect the efficiency of accessing tuples.)

To illustrate what these restrictions mean, consider again the Branch relation
shown in Figure 4.1. Because each cell should contain only one value, it is illegal
to store two postcodes for a single branch office in a single cell. In other words,
relations do not contain repeating groups. A relation that satisfies this property
is said to be normalized or in first normal form. (Normal forms are discussed in
chapters 14 and 15.)

The column names listed at the tops of columns correspond to the attributes
of the relation. The values in the branchNo attribute are all from the BranchNumbers
domain; we should not allow a postcode value to appear in this column. There can be
no duplicate tuples in a relation. For example, the row (B005, 22 Deer Rd, London,
SW1 4EH) appears only once.

Provided that an attribute name is moved along with the attribute values, we can
interchange columns. The table would represent the same relation if we were to
put the city attribute before the postcode attribute, although for readability it makes
more sense to keep the address elements in the normal order. Similarly, tuples can
be interchanged, so the records of branches BO05 and B004 can be switched and
the relation will still be the same.

Most of the properties specified for relations result from the properties of math-
ematical relations:

+ When we derived the Cartesian product of sets with simple, single-valued ele-
ments such as integers, each element in each tuple was single-valued. Similarly,
each cell of a relation contains exactly one value. However, a mathematical rela-
tion need not be normalized. Codd chose to disallow repeating groups to simplify
the relational data model.

« In a relation, the possible values for a given position are determined by the set,
or domain, on which the position is defined. In a table, the values in each col-
umn must come from the same attribute domain.

+ In a set, no elements are repeated. Similarly, in a relation, there are no dupli-
cate tuples.

+ Because a relation is a set, the order of elements has no significance. Therefore,
in a relation, the order of tuples is immaterial.

However, in a mathematical relation, the order of elements in a tuple is important.
For example, the ordered pair (1, 2) is quite different from the ordered pair (2, 1).
This is not the case for relations in the relational model, which specifically requires
that the order of attributes be immaterial. The reason is that the column headings
define which attribute the value belongs to. This means that the order of column
headings in the intension is immaterial, but once the structure of the relation is
chosen, the order of elements within the tuples of the extension must match the
order of attribute names.

157

158

Chapter 4 The Relational Model

4.2.5 Relational Keys

As stated earlier, there are no duplicate tuples within a relation. Therefore, we need
to be able to identify one or more attributes (called relational keys) that uniquely
identifies each tuple in a relation. In this section, we explain the terminology used
for relational keys.

An attribute, or set of attributes, that uniquely identifies a tuple

Superke ‘
P o within a relation.

A superkey uniquely identifies each tuple within a relation. However, a superkey
may contain additional attributes that are not necessary for unique identification,
and we are interested in identifying superkeys that contain only the minimum num-
ber of attributes necessary for unique identification.

Candidate A superkey such that no proper subset is a superkey within the
key relation.

A candidate key K for a relation R has two properties:

« Uniqueness. In each tuple of R, the values of K uniquely identify that tuple.
« Irreducibility. No proper subset of K has the uniqueness property.

There may be several candidate keys for a relation. When a key consists of more
than one attribute, we call it a composite key. Consider the Branch relation shown
in Figure 4.1. Given a value of city, we can determine several branch offices (for
example, London has two branch offices). This attribute cannot be a candidate
key. On the other hand, because DreamHome allocates each branch office a unique
branch number, given a branch number value, branchNo, we can determine at most
one tuple, so that branchNo is a candidate key. Similarly, postcode is also a candidate
key for this relation.

Now consider a relation Viewing, which contains information relating to properties
viewed by clients. The relation comprises a client number (clientNo), a property num-
ber (propertyNo), a date of viewing (viewDate) and, optionally, a comment (comment).
Given a client number, clientNo, there may be several corresponding viewings for dif-
ferent properties. Similarly, given a property number, propertyNo, there may be several
clients who viewed this property. Therefore, clientNo by itself or propertyNo by itself
cannot be selected as a candidate key. However, the combination of clientNo and prop-
ertyNo identifies at most one tuple, so for the Viewing relation, clientNo and propertyNo
together form the (composite) candidate key. If we need to take into account the pos-
sibility that a client may view a property more than once, then we could add viewDate
to the composite key. However, we assume that this is not necessary.

Note that an instance of a relation cannot be used to prove that an attribute or
combination of attributes is a candidate key. The fact that there are no duplicates
for the values that appear at a particular moment in time does not guarantee that
duplicates are not possible. However, the presence of duplicates in an instance can
be used to show that some attribute combination is not a candidate key. Identifying
a candidate key requires that we know the “real-world” meaning of the attribute(s)
involved so that we can decide whether duplicates are possible. Only by using this
semantic information can we be certain that an attribute combination is a candi-
date key. For example, from the data presented in Figure 4.1, we may think that

4.2 Terminology 159

a suitable candidate key for the Staff relation would be IName, the employee’s sur-
name. However, although there is only a single value of “White” in this instance
of the Staff relation, a new member of staff with the surname “White” may join the
company, invalidating the choice of IName as a candidate key.

Primary The candidate key that is selected to identify tuples uniquely within
key the relation.

Because a relation has no duplicate tuples, it is always possible to identify each
row uniquely. This means that a relation always has a primary key. In the worst
case, the entire set of attributes could serve as the primary key, but usually some
smaller subset is sufficient to distinguish the tuples. The candidate keys that are not
selected to be the primary key are called alternate keys. For the Branch relation,
if we choose branchNo as the primary key, postcode would then be an alternate key.
For the Viewing relation, there is only one candidate key, comprising clientNo and
propertyNo, so these attributes would automatically form the primary key.

Foreign An attribute, or set of attributes, within one relation that matches the
key candidate key of some (possibly the same) relation.

When an attribute appears in more than one relation, its appearance usually rep-
resents a relationship between tuples of the two relations. For example, the inclusion
of branchNo in both the Branch and Staff relations is quite deliberate and links each
branch to the details of staff working at that branch. In the Branch relation, branchNo is
the primary key. However, in the Staff relation, the branchNo attribute exists to match
staff to the branch office they work in. In the Staff relation, branchNo is a foreign key.
We say that the attribute branchNo in the Staff relation targets the primary key attribute
branchNo in the home relation, Branch. These common attributes play an important
role in performing data manipulation, as we see in the next chapter.

4.2.6 Representing Relational Database Schemas

A relational database consists of any number of normalized relations. The rela-
tional schema for part of the DreamHome case study is:

Branch (branchNo, street, city, postcode)
Staff (staffNo, fName, IName, position, sex, DOB, salary, branchNo)

PropertyForRent (propertyNo, street, city, postcode, type, rooms, rent, ownerNo,
staffNo, branchNo)

Client (clientNo, fName, IName, telNo, prefType, maxRent, eMail)
PrivateOwner (ownerNo, fName, IName, address, telNo, eMalil, password)
Viewing (clientNo, propertyNo, viewDate, comment)

Registration (clientNo, branchNo, staffNo, datejoined)

The common convention for representing a relation schema is to give the name of
the relation followed by the attribute names in parentheses. Normally, the primary
key is underlined.

The conceptual model, or conceptual schema, is the set of all such schemas for the
database. Figure 4.3 shows an instance of this relational schema.

160

Figure 4-3
Instance of the
DreamHome
rental database.

Chapter 4 The Relational Model

Branch
branchNo | street city postcode
B005 22 Deer Rd |London [SWI14EH
B007 16 Argyll St | Aberdeen | AB2 35U
B003 163 Main St | Glasgow | G119QX
B004 32 Manse Rd | Bristol BS99 INZ
B002 56 Clover Dr | London | NW10 6EU
Staff
staffNo | fName [IName [position |sex|DOB salary | branchNo
SL21 John White |Manager |M 1-Oct-45 | 30000 | B0OOS5
SG37 Ann Beech | Assistant |[F 10-Nov-60 | 12000 | B003
SG14 David | Ford Supervisor | M [24-Mar-58 | 18000 [B003
SA9 Mary |Howe |[Assistant |F 19-Feb-70 | 9000 | B0OO7
SG5 Susan | Brand | Manager |F 3-Jun-40 | 24000 [B003
SL41 Julie Lee Assistant | F 13-Jun-65 | 9000 B005
PropertyForRent
propertyNo | street city postcode |type |rooms |rent|ownerNo [staffNo [branchNo
PA14 16 Holhead | Aberdeen | AB7 5SU | House | 6 650 | CO46 SA9 B007
PL94 6 Argyll St London |NW2 Flat 4 400 | CO87 SL41 B005
PG4 6 Lawrence St | Glasgow | G119QX | Flat 3 350 [CO40 B003
PG36 2 Manor Rd | Glasgow | G324QX | Flat 3 375 | CO93 SG37 B003
PG21 18 Dale Rd Glasgow | G12 House | 5 600 | CO87 SG37 B003
PGl6 5Novar Dr [Glasgow | G129AX |Flat |4 450 | CO93 SG14 B003
Client
clientNo | fName | IName | telNo prefType | maxRent [eMail
CR76 John Kay 0207-774-5632 | Flat 425 john.kay@gmail.com
CR56 Aline | Stewart | 0141-848-1825 | Flat 350 astewart@hotmail.com
CR74 Mike | Ritchie [01475-392178 | House 750 mritchie01@yahoo.co.uk
CR62 Mary | Tregear [01224-196720 | Flat 600 maryt@hotmail.co.uk
PrivateOwner
ownerNo | fName | IName [address telNo eMail password
CO46 Joe Keogh | 2 Fergus Dr, Aberdeen AB2 7SX | 01224-861212 | jkeogh@lhh.com R
CO87 Carol | Farrel [6 Achray St, Glasgow G32 9DX | 0141-357-7419 | cfarrel@gmail.com R
CO40 Tina Murphy | 63 Well St, Glasgow G42 0141-943-1728 | tinam@hotmail.com | ********
CO93 Tony [Shaw 12 Park Pl, Glasgow G4 0QR 0141-225-7025 | tony.shaw@ark.com | ****xxxx
Viewing Registration
clientNo | propertyNo | viewDate | comment clientNo [branchNo | staffNo | dateJoined
CR56 PA14 24-May-13 | too small CR76 B005 SL41 2-Jan-13
CR76 PG4 20-Apr-13 | too remote CR56 B003 SG37 11-Apr-12
CR56 PG4 26-May-13 CR74 B003 SG37 16-Nov-11
CR62 PA14 14-May-13 [no dining room CR62 B007 SA9 7-Mar-12
CR56 PG36 28-Apr-13

4.3 Integrity Constraints

4.3 Integrity Constraints

| S—

In the previous section, we discussed the structural part of the relational data
model. As stated in Section 2.3, a data model has two other parts: a manipulative
part, defining the types of operation that are allowed on the data, and a set of integ-
rity constraints, which ensure that the data is accurate. In this section, we discuss the
relational integrity constraints, and in the next chapter, we discuss the relational
manipulation operations.

We have already seen an example of an integrity constraint in Section 4.2.1:
because every attribute has an associated domain, there are constraints (called
domain constraints) that form restrictions on the set of values allowed for the
attributes of relations. In addition, there are two important integrity rules, which
are constraints or restrictions that apply to all instances of the database. The two
principal rules for the relational model are known as entity integrity and referential
integrity. Other types of integrity constraint are multiplicity, which we discuss in
Section 12.6, and general constraints, which we introduce in Section 4.3.4. Before
we define entity and referential integrity, it is necessary to understand the concept
of nulls.

4.3.1 Nulls

Represents a value for an attribute that is currently unknown or is not

Null applicable for this tuple.

A null can be taken to mean the logical value “unknown.” It can mean that a value
is not applicable to a particular tuple, or it could merely mean that no value has
yet been supplied. Nulls are a way to deal with incomplete or exceptional data.
However, a null is not the same as a zero numeric value or a text string filled with
spaces; zeros and spaces are values, but a null represents the absence of a value.
Theretore, nulls should be treated differently from other values. Some authors use
the term “null value”; however, as a null is not a value but represents the absence
of a value, the term “null value” is deprecated.

For example, in the Viewing relation shown in Figure 4.3, the comment attrib-
ute may be undefined until the potential renter has visited the property and
returned his or her comment to the agency. Without nulls, it becomes necessary
to introduce false data to represent this state or to add additional attributes that
may not be meaningful to the user. In our example, we may try to represent
a null comment with the value —1. Alternatively, we may add a new attribute
hasCommentBeenSupplied to the Viewing relation, which contains a Y (Yes) if a com-
ment has been supplied, and N (No) otherwise. Both these approaches can be
confusing to the user.

Nulls can cause implementation problems, arising from the fact that the rela-
tional model is based on first-order predicate calculus, which is a two-valued or
Boolean logic—the only values allowed are true or false. Allowing nulls means that
we have to work with a higher-valued logic, such as three- or four-valued logic
(Codd, 1986, 1987, 1990).

161

162

Chapter 4 The Relational Model

The incorporation of nulls in the relational model is a contentious issue. Codd
later regarded nulls as an integral part of the model (Codd, 1990). Others consider
this approach to be misguided, believing that the missing information problem is
not fully understood, that no fully satisfactory solution has been found and, conse-
quently, that the incorporation of nulls in the relational model is premature (see,
for example, Date, 1995).

We are now in a position to define the two relational integrity rules.

4.3.2 Entity Integrity

The first integrity rule applies to the primary keys of base relations. For the present,
we define a base relation as a relation that corresponds to an entity in the concep-
tual schema (see Section 2.1). We provide a more precise definition in Section 4.4.

Entity integrity ‘ In a base relation, no attribute of a primary key can be null.

By definition, a primary key is a minimal identifier that is used to identify tuples
uniquely. This means that no subset of the primary key is sufficient to provide
unique identification of tuples. If we allow a null for any part of a primary key, we
are implying that not all the attributes are needed to distinguish between tuples,
which contradicts the definition of the primary key. For example, as branchNo is the
primary key of the Branch relation, we should not be able to insert a tuple into the
Branch relation with a null for the branchNo attribute. As a second example, consider
the composite primary key of the Viewing relation, comprising the client number
(clientNo) and the property number (propertyNo). We should not be able to insert a
tuple into the Viewing relation with a null for the clientNo attribute, or a null for the
propertyNo attribute, or nulls for both attributes.

If we were to examine this rule in detail, we would find some anomalies. First,
why does the rule apply only to primary keys and not more generally to candidate
keys, which also identify tuples uniquely? Second, why is the rule restricted to base
relations? For example, using the data of the Viewing relation shown in Figure 4.3,
consider the query “List all comments from viewings.” This query will produce a
unary relation consisting of the attribute comment. By definition, this attribute must
be a primary key, but it contains nulls (corresponding to the viewings on PG36 and
PG4 by client CR56). Because this relation is not a base relation, the model allows
the primary key to be null. There have been several attempts to redefine this rule
(see, for example, Codd, 1988, and Date, 1990).

4.3.3 Referential Integrity
The second integrity rule applies to foreign keys.
If a foreign key exists in a relation, either the foreign key value must

match a candidate key value of some tuple in its home relation or
the foreign key value must be wholly null.

Referential
integrity

For example, branchNo in the Staff relation is a foreign key targeting the branchNo
attribute in the home relation, Branch. It should not be possible to create a staff

4.4 Views

record with branch number B025, for example, unless there is already a record
for branch number B025 in the Branch relation. However, we should be able to cre-
ate a new staff record with a null branch number to allow for the situation where
a new member of staff has joined the company but has not yet been assigned to a
particular branch office.

4.3.4 General Constraints

General Additional rules specified by the users or database administrators
constraints of a database that define or constrain some aspect of the enterprise.

It is also possible for users to specify additional constraints that the data must sat-
isfy. For example, if an upper limit of 20 has been placed upon the number of staff
that may work at a branch office, then the user must be able to specify this general
constraint and expect the DBMS to enforce it. In this case, it should not be possible
to add a new member of staff at a given branch to the Staff relation if the number of
staff currently assigned to that branch is 20. Unfortunately, the level of support for
general constraints varies from system to system. We discuss the implementation of
relational integrity in 7 and 18.

4.4 views

-,

In the three-level ANSI-SPARC architecture presented in Chapter 2, we described
an external view as the structure of the database as it appears to a particular user.
In the relational model, the word “view” has a slightly different meaning. Rather
than being the entire external model of a user’s view, a view is a virtual or derived
relation: a relation that does not necessarily exist in its own right, but may be
dynamically derived from one or more base relations. Thus, an external model can
consist of both base (conceptual-level) relations and views derived from the base
relations. In this section, we briefly discuss views in relational systems. In Section
7.4 we examine views in more detail and show how they can be created and used
within SQL.

4.4.1 Terminology

The relations we have been dealing with so far in this chapter are known as base
relations.

Base A named relation corresponding to an entity in the conceptual
relation schema, whose tuples are physically stored in the database.

We can define a view in terms of base relations.

The dynamic result of one or more relational operations operating on
the base relations to produce another relation. A view is a virtual relation
that does not necessarily exist in the database but can be produced upon
request by a particular user, at the time of request.

View

163

164

Chapter 4 The Relational Model

Aview is a relation that appears to the user to exist, can be manipulated as if
it were a base relation, but does not necessarily exist in storage in the sense that
the base relations do (although its definition is stored in the system catalog).
The contents of a view are defined as a query on one or more base relations.
Any operations on the view are automatically translated into operations on the
relations from which it is derived. Views are dynamic, meaning that changes
made to the base relations that affect the view are immediately reflected in the
view. When users make permitted changes to the view, these changes are made
to the underlying relations. In this section, we describe the purpose of views
and briefly examine restrictions that apply to updates made through views.
However, we defer treatment of how views are defined and processed until
Section 7.4.

4.4.2 Purpose of Views
The view mechanism is desirable for several reasons:

- It provides a powerful and flexible security mechanism by hiding parts of the
database from certain users. Users are not aware of the existence of any attributes
or tuples that are missing from the view.

- It permits users to access data in a way that is customized to their needs, so
that the same data can be seen by different users in different ways, at the same
time.

« It can simplify complex operations on the base relations. For example, if a view
is defined as a combination (join) of two relations (see Section 5.1), users may
now perform more simple operations on the view, which will be translated by the
DBMS into equivalent operations on the join.

A view should be designed to support the external model that the user finds
familiar. For example:

+ A user might need Branch tuples that contain the names of managers as well
as the other attributes already in Branch. This view is created by combining the
Branch relation with a restricted form of the Staff relation where the staff position
is “Manager.”

+ Some members of staft should see Staff tuples without the salary attribute.

- Attributes may be renamed or the order of attributes changed. For example, the
user accustomed to calling the branchNo attribute of branches by the full name
Branch Number may see that column heading.

- Some members of staff should see property records only for those properties that
they manage.

Although all these examples demonstrate that a view provides logical data independ-
ence (see Section 2.1.5), views allow a more significant type of logical data independ-
ence that supports the reorganization of the conceptual schema. For example, if a
new attribute is added to a relation, existing users can be unaware of its existence
if their views are defined to exclude it. If an existing relation is rearranged or split
up, a view may be defined so that users can continue to see their original views.
We will see an example of this in Section 7.4.7 when we discuss the advantages and
disadvantages of views in more detail.

Chapter Summary 165

4.4.3 Updating Views

All updates to a base relation should be immediately reflected in all views that
reference that base relation. Similarly, if a view is updated, then the underlying
base relation should reflect the change. However, there are restrictions on the
types of modification that can be made through views. We summarize here the
conditions under which most systems determine whether an update is allowed
through a view:

Updates are allowed through a view defined using a simple query involving a
single base relation and containing either the primary key or a candidate key of
the base relation.

Updates are not allowed through views involving multiple base relations.

Updates are not allowed through views involving aggregation or grouping
operations.

Classes of views have been defined that are theoretically not updatable, theoreti-
cally updatable, and partially updatable. A survey on updating relational views can
be found in Furtado and Casanova (1985).

Chapter Summary

The Relational Database Management System (RDBMS) has become the dominant data-processing software in use
today, with estimated new licence sales of between US$6 billion and US$10 billion per year (US$25 billion with
tools sales included). This software represents the second generation of DBMSs and is based on the relational
data model proposed by E. F. Codd.

A mathematical relation is a subset of the Cartesian product of two or more sets. In database terms, a relation
is any subset of the Cartesian product of the domains of the attributes. A relation is normally written as a set of
n-tuples, in which each element is chosen from the appropriate domain.

Relations are physically represented as tables, with the rows corresponding to individual tuples and the columns to
attributes.

The structure of the relation, with domain specifications and other constraints, is part of the intension of the
database; the relation with all its tuples written out represents an instance or extension of the database.

Properties of database relations are: each cell contains exactly one atomic value, attribute names are distinct,
attribute values come from the same domain, attribute order is immaterial, tuple order is immaterial, and there
are no duplicate tuples.

The degree of a relation is the number of attributes, and the cardinality is the number of tuples. A unary
relation has one attribute, a binary relation has two, a ternary relation has three, and an n-ary relation has n
attributes.

A superkey is an attribute, or set of attributes, that identifies tuples of a relation uniquely, and a candidate
key is a minimal superkey. A primary key is the candidate key chosen for use in identification of tuples. A rela-
tion must always have a primary key. A foreign key is an attribute, or set of attributes, within one relation that
is the candidate key of another relation.

A null represents a value for an attribute that is unknown at the present time or is not applicable for this tuple.

166 Chapter 4 The Relational Model

+ Entity integrity is a constraint that states that in a base relation no attribute of a primary key can be null.
Referential integrity states that foreign key values must match a candidate key value of some tuple in the
home relation or be wholly null. Apart from relational integrity, integrity constraints include required data,
domain, and multiplicity constraints; other integrity constraints are called general constraints.

« A view in the relational model is a virtual or derived relation that is dynamically created from the under-
lying base relation(s) when required. Views provide security and allow the designer to customize a user's
model. Not all views are updatable.

Review Questions

4.1 Discuss each of the following concepts in the context of the relational data model:

(a) relation

(b) attribute

(c) domain

(d) tuple

(e) intension and extension

(f) degree and cardinality.
4.2 Describe the relationship between mathematical relations and relations in the relational data model.
4.3 Describe the term “normalized reaction.” Why are constraints so important in a relational database?
4.4 Discuss the properties of a relation.

4.5 Discuss the differences between the candidate keys and the primary key of a relation. Explain what is meant by a
foreign key. How do foreign keys of relations relate to candidate keys? Give examples to illustrate your answer.

4.6 Define the two principal integrity rules for the relational model. Discuss why it is desirable to enforce these rules.

4.7 Define “views.” Why are they important in a database approach?

Exercises

The following tables form part of a database held in a relational DBMS:

Hotel (hotelNo, hotelName, city)

Room (roomNo, hotelNo, type, price)

Booking (hotelNo, guestNo, dateFrom, dateTo, roomNo)
Guest (guestNo, guestName, guestAddress)

where Hotel contains hotel details and hotelNo is the primary key;
Room contains room details for each hotel and (roomNo, hotelNo) forms the primary key;
Booking contains details of bookings and (hotelNo, guestNo, dateFrom) forms the primary key;
Guest contains guest details and guestNo is the primary key.

4.8 Identify the foreign keys in this schema. Explain how the entity and referential integrity rules apply to these relations.

4.9 Produce some sample tables for these relations that observe the relational integrity rules. Suggest some general
constraints that would be appropriate for this schema.

4.10 Analyze the RDBMSs that you are currently using. Determine the support the system provides for primary keys,
alternate keys, foreign keys, relational integrity, and views.

4.11 Implement the above schema in one of the RDBMSs you currently use. Generate two user-views that are
accessible and updatable as well as two other user-views that cannot be updated.

CHAPTER

Relational Algebra and
Relational Calculus

Chapter Objectives
In this chapter you will learn:

* The meaning of the term “relational completeness.”

* How to form queries in the relational algebra.

* How to form queries in the tuple relational calculus.

* How to form queries in the domain relational calculus.

* The categories of relational Data Manipulation Languages (DMLs).

In the previous chapter we introduced the main structural components of the
relational model. As we discussed in Section 2.3, another important part of a data
model is a manipulation mechanism, or query language, to allow the underlying
data to be retrieved and updated. In this chapter we examine the query languages
associated with the relational model. In particular, we concentrate on the rela-
tional algebra and the relational calculus as defined by Codd (1971) as the basis
for relational languages. Informally, we may describe the relational algebra as a
(high-level) procedural language: it can be used to tell the DBMS how to build
a new relation from one or more relations in the database. Again, informally, we
may describe the relational calculus as a nonprocedural language: it can be used to
formulate the definition of a relation in terms of one or more database relations.
However, the relational algebra and relational calculus are formally equivalent to
one another: for every expression in the algebra, there is an equivalent expression
in the calculus (and vice versa).

Both the algebra and the calculus are formal, non-user-friendly languages. They
have been used as the basis for other, higher-level Data Manipulation Languages
(DMLs) for relational databases. They are of interest because they illustrate the
basic operations required of any DML and because they serve as the standard of
comparison for other relational languages.

The relational calculus is used to measure the selective power of relational
languages. A language that can be used to produce any relation that can be
derived using the relational calculus is said to be relationally complete. Most
relational query languages are relationally complete but have more expressive

167

168

Chapter 5 Relational Algebra and Relational Calculus

&

v

power than the relational algebra or relational calculus, because of additional
operations such as calculated, summary, and ordering functions.

Structure of this Chapter In Section 5.1 we examine the relational
algebra and in Section 5.2 we examine two forms of the relational calculus:
tuple relational calculus and domain relational calculus. In Section 5.3 we
briefly discuss some other relational languages. We use the DreamHome rental
database instance shown in Figure 4.3 to illustrate the operations.

In Chapters 6-9 we examine SQL, the formal and de facto standard language
for RDBMSs, which has constructs based on the tuple relational calculus. In
Appendix M we examine QBE (Query-By-Example), another highly popular
visual query language for RDBMSs, which is based in part on the domain rela-
tional calculus.

5.1 The Relational Algebra

[[

The relational algebra is a theoretical language with operations that work on one or
more relations to define another relation without changing the original relation(s).
Thus both the operands and the results are relations, and so the output from one
operation can become the input to another operation. This ability allows expres-
sions to be nested in the relational algebra, just as we can nest arithmetic opera-
tions. This property is called closure: relations are closed under the algebra, just as
numbers are closed under arithmetic operations.

The relational algebra is a relation-at-a-time (or set) language in which all tuples,
possibly from several relations, are manipulated in one statement without looping.
There are several variations of syntax for relational algebra commands and we use
a common symbolic notation for the commands and present it informally. The
interested reader is referred to Ullman (1988) for a more formal treatment.

There are many variations of the operations that are included in relational alge-
bra. Codd (1972a) originally proposed eight operations, but several others have
been developed. The five fundamental operations in relational algebra—Selection,
Projection, Cartesian product, Union, and Set difference—perform most of the data
retrieval operations that we are interested in. In addition, there are also the Join,
Intersection, and Division operations, which can be expressed in terms of the five
basic operations. The function of each operation is illustrated in Figure 5.1.

The Selection and Projection operations are unary operations, as they operate
on one relation. The other operations work on pairs of relations and are therefore
called binary operations. In the following definitions, let R and S be two relations
defined over the attributes A = (aj, a,, ..., ay) and B = (b, b, ..., by), respectively.

5.1.1 Unary Operations

We start the discussion of the relational algebra by examining the two unary opera-
tions: Selection and Projection.

5.1 The Relational Algebra 169

P Q PxQ Figure 5.1

H Als lllustration
showing the

relational algebra
operations.

1 function of the
2 =
3

T T T O OO
WN = WN =

(a) Selection (b) Projection (c) Cartesian product
RUS RNS R-S
R
R R
S S
S
(d) Union (e) Intersection (f) Set difference
T U T U T U T>, U
A | B B|C A| B |C A | B Al B|C
a 1 1 X a 1 X a 1 a 1 X
b | 2 1|y a |1 a |1
3|z b | 2
(g) Natural join (h) Semijoin (i) Left Outer join
R S R+S v w V+W
A | B B A
a | 1 1 a
a | 2 2 b
b | 1
b | 2
Remainder c |1
(j) Division (shaded area) Example of division

Selection (or Restriction)

The Selection operation works on a single relation R and defines a
@ predicate(R) relati’ovn that coptains only those tuples of R that satisfy the specified
condition (predicate).

170

Chapter 5 Relational Algebra and Relational Calculus

EXAMPLE 5.1 Selection operation

List all staff with a salary greater than £10000.

O salary > 10000(Staff)

Here, the input relation is Staff and the predicate is salary > 10000. The Selection
operation defines a relation containing only those Staff tuples with a salary greater than
£10000. The result of this operation is shown in Figure 5.2. More complex predicates
can be generated using the logical operators (AND), (OR), and ~ (NOT).

staffNo | fName | IName | position sex | DOB salary | branchNo

SL21 John White | Manager M 1-Oct-45 [30000 [B005
SG37 Ann Beech | Assistant F 10-Nov-60 | 12000 [B003
SG14 David | Ford Supervisor | M | 24-Mar-58 | 18000 | B003
SG5 Susan | Brand | Manager F 3-Jun-40 24000 | B003

Figure 5.2 Selecting salary > 10000 from the Staff relation.

Projection

The Projection operation works on a single relation R and defines a
I, .(R) relation that contains a vertical subset of R, extracting the values of
specified attributes and eliminating duplicates.

EXAMPLE 5.2 Projection operation

Produce a list of salaries for all staff, showing only the staffNo, fName, IName, and salary details.

HstaffNo‘ fName, IName, salary(Staff)

In this example, the Projection operation defines a relation that contains only the desig-
nated Staff attributes staffNo, fName, IName, and salary, in the specified order. The result
of this operation is shown in Figure 5.3.

staffNo [fName | IName | salary

SL21 John White 30000
SG37 Ann Beech 12000
SG14 David Ford 18000

SA9 Mary Howe 9000
SG5 Susan Brand 24000
SL41 Julie Lee 9000

Figure 5.3 Projecting the Staff relation over the staffNo, fName, IName, and salary attributes.

5.1 The Relational Algebra

5.1.2 Set Operations

The Selection and Projection operations extract information from only one rela-
tion. There are obviously cases where we would like to combine information from
several relations. In the remainder of this section, we examine the binary opera-
tions of the relational algebra, starting with the set operations of Union, Set differ-
ence, Intersection, and Cartesian product.

Union

The union of two relations R and S defines a relation that contains all the
tuples of R, or S, or both R and S, duplicate tuples being eliminated. R and
S must be union-compatible.

RUS

If R and S have I and | tuples, respectively, their union is obtained by concatenating
them into one relation with a maximum of (I + J) tuples. Union is possible only
if the schemas of the two relations match, that is, if they have the same number of
attributes with each pair of corresponding attributes having the same domain. In
other words, the relations must be union-compatible. Note that attributes names
are not used in defining union-compatibility. In some cases, the Projection opera-
tion may be used to make two relations union-compatible.

EXAMPLE 5.3 Union operation
List all cities where there is either a branch office or a property for rent.
[T (Branch) U 11, (PropertyForRent)

To produce union-compatible relations, we first use the Projection operation to project
the Branch and PropertyForRent relations over the attribute city, eliminating duplicates
where necessary. We then use the Union operation to combine these new relations to
produce the result shown in Figure 5.4.

Set difference

The Set difference operation defines a relation consisting of the tuples that

R-S
are in relation R, but not in S. R and S must be union-compatible.

EXAMPLE 5.4 Set difference operation
List all cities where there is a branch office but no properties for rent.
I, (Branch) — I, (PropertyForRent)

As in the previous example, we produce union-compatible relations by projecting the
Branch and PropertyForRent relations over the attribute city. We then use the Set differ-
ence operation to combine these new relations to produce the result shown in Figure 5.5.

171

city

London
Aberdeen
Glasgow
Bristol

Figure 5.4
Union based on
the city attribute
from the Branch
and Property-
ForRent relations

city

Bristol

Figure 5.5

Set difference
based on the city
attribute from
the Branch and
PropertyForRent
relations.

172 Chapter 5 Relational Algebra and Relational Calculus

city

Aberdeen
London
Glasgow

Figure 5.6
Intersection
based on city
attribute from
the Branch and
PropertyForRent
relations.

Intersection

The Intersection operation defines a relation consisting of the set of all

A tuples that are in both R and S. R and S must be union-compatible.

EXAMPLE 5.5 Intersection operation
List all cities where there is both a branch office and at least one property for rent.
IL;,(Branch) N II,(PropertyForRent)

As in the previous example, we produce union-compatible relations by projecting the
Branch and PropertyForRent relations over the attribute city. We then use the Intersection
operation to combine these new relations to produce the result shown in Figure 5.6.

Note that we can express the Intersection operation in terms of the Set difference
operation:

RNS=R—-(R-9)

Cartesian product

The Cartesian product operation defines a relation that is the concatena-

i tion of every tuple of relation R with every tuple of relation S.

The Cartesian product operation multiplies two relations to define another relation
consisting of all possible pairs of tuples from the two relations. Therefore, if one
relation has [tuples and N attributes and the other has J tuples and M attributes,
the Cartesian product relation will contain (I * J) tuples with (N + M) attributes. It is
possible that the two relations may have attributes with the same name. In this case,
the attribute names are prefixed with the relation name to maintain the uniqueness
of attribute names within a relation.

EXAMPLE 5.6 Cartesian product operation

List the names and comments of all clients who have viewed a property for rent.

The names of clients are held in the Client relation and the details of viewings are held
in the Viewing relation. To obtain the list of clients and the comments on properties they
have viewed, we need to combine these two relations:

Hclien(No, fName, IName (Cllent)) X (HclientNo, propertyNo, comment(VieWing))

The result of this operation is shown in Figure 5.7. In its present form, this relation
contains more information than we require. For example, the first tuple of this rela-
tion contains different clientNo values. To obtain the required list, we need to carry out
a Selection operation on this relation to extract those tuples where Client.clientNo =
Viewing.clientNo. The complete operation is thus:

O Client.clientNo = Viewing. cIientNo((HcIientNo‘ fName, IName(CIIent)) X (HclientNo, propertyNo, comment(VIeWIng))

5.1 The Relational Algebra 173

The result of this operation is shown in Figure 5.8.

client.clientNo | fName | IName | Viewing.clientNo | propertyNo | comment
CR76 John Kay CR56 PA14 too small

CR76 John Kay CR76 PG4 too remote
CR76 John Kay CR56 PG4

CR76 John Kay CR62 PA14 no dining room
CR76 John Kay CR56 PG36

CR56 Aline | Stewart | CR56 PA14 too small

CR56 Aline Stewart [CR76 PG4 too remote
CR56 Aline | Stewart | CR56 PG4

CR56 Aline | Stewart [CR62 PA14 no dining room
CR56 Aline | Stewart | CR56 PG36

CR74 Mike Ritchie | CR56 PA14 too small

CR74 Mike Ritchie | CR76 PG4 too remote
CR74 Mike [Ritchie [CR56 PG4

CR74 Mike Ritchie | CR62 PA14 no dining room
CR74 Mike Ritchie | CR56 PG36

CR62 Mary [Tregear [CR56 PA14 too small

CR62 Mary | Tregear [CR76 PG4 too remote
CR62 Mary | Tregear [CR56 PG4

CR62 Mary | Tregear [CR62 PA14 no dining room
CR62 Mary | Tregear [CR56 PG36

Figure 5.7 Cartesian product of reduced Client and Viewing relations.

client.clientNo | fName | IName | Viewing.clientNo | propertyNo | comment
CR76 John Kay CR76 PG4 too remote
CR56 Aline | Stewart | CR56 PA14 too small

CR56 Aline | Stewart | CR56 PG4

CR56 Aline | Stewart | CR56 PG36

CR62 Mary | Tregear | CR62 PA14 no dining room

Figure 5.8 Restricted Cartesian product of reduced Client and Viewing relations.

Decomposing complex operations

The relational algebra operations can be of arbitrary complexity. We can decom-
pose such operations into a series of smaller relational algebra operations and give
aname to the results of intermediate expressions. We use the assignment operation,
denoted by <, to name the results of a relational algebra operation. This works in
a similar manner to the assignment operation in a programming language: in this
case, the right-hand side of the operation is assigned to the left-hand side. For
instance, in the previous example we could rewrite the operation as follows:

TempViewing(clientNo, propertyNo, comment) <— I1 ..o, propertyNo, comment(ViEWING)

TempClient(clientNo, fName, IName) <— P ..eno, iame, iname(CliENt)

Comment(clientNo, fName, IName, vclientNo, propertyNo, comment) «—
TempClient X TempViewing

Result «— O lientNo = chientNo(Comment)

174

Chapter 5 Relational Algebra and Relational Calculus

Alternatively, we can use the Rename operation p (rho), which gives a name to the
result of a relational algebra operation. Rename allows an optional name for each
of the attributes of the new relation to be specified.

ps(E) or The Rename operation provides a new name S for the expression
Psa,, ay . . ., ap)(E) E, and optionally names the attributes as a;, a,, . . ., a,.

5.1.3 Join Operations

Typically, we want only combinations of the Cartesian product that satisfy certain
conditions and so we would normally use a Join operation instead of the Cartesian
product operation. The Join operation, which combines two relations to form a
new relation, is one of the essential operations in the relational algebra. Join is a
derivative of Cartesian product, equivalent to performing a Selection operation,
using the join predicate as the selection formula, over the Cartesian product of the
two operand relations. Join is one of the most difficult operations to implement
efficiently in an RDBMS and is one of the reasons why relational systems have
intrinsic performance problems. We examine strategies for implementing the Join
operation in Section 23.4.3.

There are various forms of the Join operation, each with subtle differences, some
more useful than others:

+ Theta join

+ Equijoin (a particular type of Theta join)
- Natural join

+ Outer join

+ Semijoin

Theta join (0-join)

The Theta join operation defines a relation that contains tuples satisfy-
ing the predicate F from the Cartesian product of R and S. The predi-
cate I is of the form Ra; 8 Sb, where 6 may be one of the comparison
operators (<, =, >, =, =, #).

R > S

We can rewrite the Theta join in terms of the basic Selection and Cartesian product
operations:

RS = ap(R X S)

As with a Cartesian product, the degree of a Theta join is the sum of the degrees
of the operand relations R and S. In the case where the predicate F contains
only equality (=), the term Equijoin is used instead. Consider again the query of
Example 5.6.

5.1 The Relational Algebra

EXAMPLE 5.7 Equijoin operation

List the names and comments of all clients who have viewed a property for rent.

In Example 5.6 we used the Cartesian product and Selection operations to obtain this
list. However, the same result is obtained using the Equijoin operation:

(HclientNo, fName, IName(Client)) > Client.clientNo = Viewing.clientNo (HclientNo, propertyNo, comment(VieWing))
or
Result — TempClient > TempViewing

TempClient.clientNo = TempViewing.clientNo

The result of these operations was shown in Figure 5.8. E—

Natural join

The Natural join is an Equijoin of the two relations R and S over all
RS common attributes x. One occurrence of each common attribute is
eliminated from the result.

The Natural join operation performs an Equijoin over all the attributes in the two
relations that have the same name. The degree of a Natural join is the sum of the
degrees of the relations R and S less the number of attributes in x.

EXAMPLE 5.8 Natural join operation

List the names and comments of all clients who have viewed a property for rent.

In Example 5.7 we used the Equijoin to produce this list, but the resulting relation had
two occurrences of the join attribute clientNo. We can use the Natural join to remove one
occurrence of the clientNo attribute:

(HclientNo. fName, IName(CIient)) > (HclientNo, propertyNo, comment(VieWing))
or
Result — TempClient >4 TempViewing

The result of this operation is shown in Figure 5.9.

clientNo | fName | IName | propertyNo | comment

CR76 John Kay PG4 too remote
CR56 Aline Stewart | PA14 too small
CR56 Aline | Stewart | PG4
CR56 Aline Stewart | PG36
CR62 Mary | Tregear | PA14 no dining room

Figure 5.9 Natural join of restricted Client and Viewing relations.

175

176

Chapter 5 Relational Algebra and Relational Calculus

Outer join

Often in joining two relations, a tuple in one relation does not have a matching
tuple in the other relation; in other words, there is no matching value in the join
attributes. We may want tuples from one of the relations to appear in the result even
when there are no matching values in the other relation. This may be accomplished
using the Outer join.

The (left) Outer join is a join in which tuples from R that do not have
RS matching values in the common attributes of S are also included in the
result relation. Missing values in the second relation are set to null.

The Outer join is becoming more widely available in relational systems and is a
specified operator in the SQL standard (see Section 6.3.7). The advantage of an
Outer join is that information is preserved; that is, the Outer join preserves tuples
that would have been lost by other types of join.

EXAMPLE 5.9 Left Outer join operation

Produce a status report on property viewings.

In this example, we want to produce a relation consisting of the properties that have
been viewed with comments and those that have not been viewed. This can be achieved
using the following Outer join:

(HpropertyNo, street, city(PropertyForRent)) > VleW|ng
The resulting relation is shown in Figure 5.10. Note that properties PL94, PG21, and
PG16 have no viewings, but these tuples are still contained in the result with nulls for
the attributes from the Viewing relation.

propertyNo | street city clientNo | viewDate | comment
PA14 16 Holhead | Aberdeen | CR56 24-May-13 | too small

PA14 16 Holhead | Aberdeen [CR62 14-May-13 [no dining room
PL94 6 Argyll St London | null null null

PG4 6 Lawrence St | Glasgow | CR76 20-Apr- 13 | too remote
PG4 6 Lawrence St | Glasgow | CR56 26-May-13

PG36 2 Manor Rd | Glasgow [CR56 28-Apr- 13

PG21 18 Dale Rd Glasgow | null null null

PGl6 5Novar Dr [Glasgow | null null null

Figure 5.10 Left (natural) Outer join of PropertyForRent and Viewing relations.

Strictly speaking, Example 5.9 is a Left (natural) Outer join, as it keeps every
tuple in the left-hand relation in the result. Similarly, there is a Right Outer join
that keeps every tuple in the right-hand relation in the result. There is also a Full
Outer join that keeps all tuples in both relations, padding tuples with nulls when
no matching tuples are found.

5.1 The Relational Algebra

Semijoin
The Semijoin operation defines a relation that contains the tuples of R

RbeS that participate in the join of R with S satisfying the predicate F.

The Semijoin operation performs a join of the two relations and then projects
over the attributes of the first operand. One advantage of a Semijoin is that it
decreases the number of tuples that need to be handled to form the join. It is
particularly useful for computing joins in distributed systems (see Sections 24.4.2
and 25.6.2). We can rewrite the Semijoin using the Projection and Join operations:

Rvp S =TI4R p< S) A is the set of all attributes for R

This is actually a Semi-Theta join. There are variants for the Semi-Equijoin and the
Semi-Natural join.

EXAMPLE 5.10 Semijoin operation

List complete details of all staff who work at the branch in Glasgow.

If we are interested in seeing only the attributes of the Staff relation, we can use the fol-
lowing Semijoin operation, producing the relation shown in Figure 5.11.

Staff > Staff branchNo = Branch branchNo(o-city = ‘Glasgow’ (BranCh))

staffNo [fName | IName | position |sex | DOB salary | branchNo

SG37 Ann Beech | Assistant | F 10-Nov-60 | 12000 | B003
SG14 David | Ford Supervisor [M | 24-Mar-58 | 18000 | B003
SG5 Susan | Brand | Manager |F 3-Jun-40 [24000 | B003

Figure 5.11 Semijoin of Staff and Branch relations.

5.1.4 Division Operation

The Division operation is useful for a particular type of query that occurs quite
frequently in database applications. Assume that relation R is defined over the
attribute set A and relation S is defined over the attribute set B such that B C A
(B is a subset of A). Let C = A — B, that is, C is the set of attributes of R that are not
attributes of S. We have the following definition of the Division operation.

The Division operation defines a relation over the attributes C that
R+S consists of the set of tuples from R that match the combination of every
tuple in S.

We can express the Division operation in terms of the basic operations:
T, = I(R)
T, = (T, X S) = R)
T-T,-T,

177

178

Chapter 5 Relational Algebra and Relational Calculus

EXAMPLE 5.11 Division operation
Identify all clients who have viewed all properties with three rooms.

We can use the Selection operation to find all properties with three rooms followed by
the Projection operation to produce a relation containing only these property numbers.
We can then use the following Division operation to obtain the new relation shown in
Figure 5.12.

(HclientNo, propertyNo(VieWing)) -~ (Hpropequo(Grooms = 3(PropertyForRent)))

HclientNo,propertyNo(VieWing) HpropertyNa(Groomszs(PropertyForRent)) RESULT

clientNo | propertyNo propertyNo clientNo
CR56 PA14 PG4 CR56
CR76 PG4 PG36

CR56 PG4

CR62 PA14

CR56 PG36

Figure 5.12 Result of the Division operation on the Viewing and PropertyForRent relations.

5.1.5 Aggregation and Grouping Operations

As well as simply retrieving certain tuples and attributes of one or more relations,
we often want to perform some form of summation or aggregation of data, similar
to the totals at the bottom of a report, or some form of grouping of data, similar to
subtotals in a report. These operations cannot be performed using the basic rela-
tional algebra operations considered earlier. However, additional operations have
been proposed, as we now discuss.

Aggregate operations

Applies the aggregate function list, AL, to the relation R to define a
a(R) relation over the aggregate list. AL contains one or more (<aggregate_
function>, <attribute>) pairs.

The main aggregate functions are:

« COUNT - returns the number of values in the associated attribute.
« SUM - returns the sum of the values in the associated attribute.

+ AVG - returns the average of the values in the associated attribute.
« MIN - returns the smallest value in the associated attribute.

+ MAX - returns the largest value in the associated attribute.

EXAMPLE 5.12 Aggregate operations
(a) How many properties cost more than £350 per month to rent?

We can use the aggregate function COUNT to produce the relation R shown in
Figure 5.13(a):

5.1 The Relational Algebra

myCount myMin [myMax | myAverage

5 9000 30000 17000

(a) (b)
Figure 5.13 Result of the Aggregate operations: (a) finding the number of properties whose
rent is greater than £350; (b) finding the minimum, maximum, and average staff salary.

Pr(MYCount) counT propertyNo (Trene = 350 (PropertyForRent))
(b) Find the minimum, maximum, and average staff salary.

We can use the aggregate functions—MIN, MAX, and AVERAGE—to produce the rela-
tion R shown in Figure 5.13(b) as follows:

pr(mMyMin, myMax, myAvVerage) wi saiary, MAX salary, AVERAGE satary (Staff)

Grouping operation

Groups the tuples of relation R by the grouping attributes, GA, and
then applies the aggregate function list AL to define a new relation. AL

eaac(R) contains one or more (<aggregate_function>, <attribute>) pairs. The
resulting relation contains the grouping attributes, GA, along with the
results of each of the aggregate functions.

The general form of the grouping operation is as follows:

ap dy - ..y dy <Apap>, <Aqig>, - -, <Agja,> R
where R is any relation, a;, a,, . . ., a, are attributes of R on which to group,
ay g - - - » &, are other attributes of R, and A, A, . . ., A, are aggregate functions.
The tuples of R are partitioned into groups such that:
- all tuples in a group have the same value for a;, a,, ..., a;
« tuples in different groups have different values for a;, a,, ... a,

We illustrate the use of the grouping operation with the following example.

EXAMPLE 5.13 Grouping operation
Find the number of staff working in each branch and the sum of their salaries.

We first need to group tuples according to the branch number, branchNo, and then use
the aggregate functions COUNT and SUM to produce the required relation. The rela-
tional algebra expression is as follows:

pr(branchNo, myCount, mySum) y.ncine COUNT stafiNo, SUM salary (Staff)

The resulting relation is shown in Figure 5.14.

branchNo | myCount | mySum

B003 3 54000
B005 2 39000
B007 1 9000

Figure 5.14 Result of the grouping operation to find the number of staff working in each branch
and the sum of their salaries.

179

180 Chapter 5 Relational Algebra and Relational Calculus

5.1.6 Summary of the Relational Algebra Operations

The relational algebra operations are summarized in Table 5.1.

TABLE 5.1
OPERATION

Selection

Projection

Union

Set difference
Intersection

Cartesian
product
Theta join

Equijoin

Natural join

(Left) Outer

join

Semijoin

Division

Aggregate

Grouping

Operations in the relational algebra.

NOTATION FUNCTION

Upredrcate(R)

RNS

RXS

R>4S

a(R)

aan(R)

Produces a relation that contains only those tuples of R that
satisfy the specified predicate.

Produces a relation that contains a vertical subset of R,
extracting the values of specified attributes and eliminating
duplicates.

Produces a relation that contains all the tuples of R, or S, or
both R and S, duplicate tuples being eliminated. R and S must
be union-compatible.

Produces a relation that contains all the tuples in R that are not
in S. R and S must be union-compatible.

Produces a relation that contains all the tuples in both R and S.
R and S must be union-compatible.

Produces a relation that is the concatenation of every tuple of
relation R with every tuple of relation S.

Produces a relation that contains tuples satisfying the predicate
F from the Cartesian product of R and S.

Produces a relation that contains tuples satisfying the predicate
F (which contains only equality comparisons) from the
Cartesian product of R and S.

An Equijoin of the two relations R and S over all common
attributes x. One occurrence of each common attribute is
eliminated.

A join in which tuples from R that do not have matching values
in the common attributes of S are also included in the result
relation.

Produces a relation that contains the tuples of R that
participate in the join of R with S satisfying the predicate F.

Produces a relation that consists of the set of tuples from R
defined over the attributes C that match the combination of
every tuple in S, where C is the set of attributes that are in R
but not in S.

Applies the aggregate function list, AL, to the relation R to define
a relation over the aggregate list. AL contains one or more
(<aggregate_function>, <attribute>) pairs.

Groups the tuples of relation R by the grouping attributes,

GA, and then applies the aggregate function list AL to define a
new relation. AL contains one or more (<aggregate_function>,
<attribute>) pairs. The resulting relation contains the grouping
attributes, GA, along with the results of each of the aggregate
functions.

5.2 The Relational Calculus

5.2 The Relational Calculus

| IE—

A certain order is always explicitly specified in a relational algebra expression and
a strategy for evaluating the query is implied. In the relational calculus, there is no
description of how to evaluate a query; a relational calculus query specifies what is
to be retrieved rather than how to retrieve it.

The relational calculus is not related to differential and integral calculus in
mathematics, but takes its name from a branch of symbolic logic called predicate
calculus. When applied to databases, it is found in two forms: tuple relational cal-
culus, as originally proposed by Codd (1972a), and domain relational calculus, as
proposed by Lacroix and Pirotte (1977).

In first-order logic or predicate calculus, a predicate is a truth-valued function
with arguments. When we substitute values for the arguments, the function yields
an expression, called a proposition, which can be either true or false. For example,
the sentences, “John White is a member of staff” and “John White earns more than
Ann Beech” are both propositions, because we can determine whether they are true
or false. In the first case, we have a function, “is a member of staff,” with one argu-
ment (John White); in the second case, we have a function, “earns more than,” with
two arguments (John White and Ann Beech).

If a predicate contains a variable, as in “x is a member of staff,” there must be
an associated range for x. When we substitute some values of this range for x, the
proposition may be true; for other values, it may be false. For example, if the range
is the set of all people and we replace x by John White, the proposition “John White
is a member of staff” is true. If we replace x by the name of a person who is not a
member of staff, the proposition is false.

If P is a predicate, then we can write the set of all x such that P is true for x, as:

{x | P(x)}

We may connect predicates by the logical connectives (AND), (OR), and
~ (NOT) to form compound predicates.

5.2.1 Tuple Relational Calculus

In the tuple relational calculus, we are interested in finding tuples for which a pred-
icate is true. The calculus is based on the use of tuple variables. A tuple variable is a
variable that “ranges over” a named relation: that is, a variable whose only permit-
ted values are tuples of the relation. (The word “range” here does not correspond
to the mathematical use of range, but corresponds to a mathematical domain.) For
example, to specify the range of a tuple variable S as the Staff relation, we write:

Staff(s)
To express the query “Find the set of all tuples S such that F(S) is true,” we can write:
{s |)}

F is called a formula (well-formed formula, or wff in mathematical logic).
For example, to express the query “Find the staffNo, fName, IName, position,

181

182 Chapter 5 Relational Algebra and Relational Calculus

sex, DOB, salary, and branchNo of all staff earning more than £10,000,” we can
write:

{S | Staff(S) S.salary > 10000}

S.salary means the value of the salary attribute for the tuple variable S. To retrieve a
particular attribute, such as salary, we would write:

{S.salary | Staff(S) S.salary > 10000}

The existential and universal quantifiers

There are two quantifiers we can use with formulae to tell how many instances the
predicate applies to. The existential quantifier 3 (“there exists”) is used in formu-
lae that must be true for at least one instance, such as:

Staff(S) (IB) (Branch(B) (B.branchNo = S.branchNo) B.city = ‘London’)

This means, “There exists a Branch tuple that has the same branchNo as the branchNo
of the current Staff tuple, S, and is located in London.” The universal quantifier V
(“for all”) is used in statements about every instance, such as:

(VB) (B.city # ‘Paris’)
This means, “For all Branch tuples, the address is not in Paris.” We can apply a gen-

eralization of De Morgan’s laws to the existential and universal quantifiers. For
example:

@X)EX) ~ (YX)(~(F(X))
(YX)(EX) ~@X)(~(F (X))
@X)EF LX) Fo(X)) ~(VX)(~(Fi(X) ~(Fs(X))
(VX)(F(X) FoX)) ~@X)(~(Fi(X)) ~(Fu(X))
Using these equivalence rules, we can rewrite the previous formula as:
~(3B) (B.city = ‘Paris’)

which means, “There are no branches with an address in Paris.”

Tuple variables that are qualified by Vor 3 are called bound variables; the other
tuple variables are called free variables. The only free variables in a relational
calculus expression should be those on the left side of the bar (]). For example, in
the following query:

{S.fName, S.IName | Staff(S) (dB) (Branch(B) (B.branchNo = S.branchNo)
B.city = ‘London’)}

S is the only free variable and S is then bound successively to each tuple of Staff.

Expressions and formulae

As with the English alphabet, in which some sequences of characters do not form a
correctly structured sentence, in calculus not every sequence of formulae is accept-
able. The formulae should be those sequences that are unambiguous and make
sense. An expression in the tuple relational calculus has the following general form:

5.2 The Relational Calculus

{Sian Suan .. Suay | FS, Syt SO} m=n

where S, S, ..., S, ..., S, are tuple variables; each g is an attribute of the relation
over which § ranges; and Fis a formula. A (well-formed) formula is made out of one
or more atoms, where an atom has one of the following forms:

+ R(S), where S, is a tuple variable and R is a relation.

+ 5.0, 0 S.a,, where S, and § are tuple variables, g, is an attribute of the relation
over which § ranges, g, is an attribute of the relation over which §, ranges, and 6
is one of the comparison operators (<, =, >, =, =, #); the attributes ¢, and a,
must have domains whose members can be compared by 6.

+ S.a, 0 ¢, where S is a tuple variable, g, is an attribute of the relation over which §
ranges, ¢ is a constant from the domain of attribute a,, and 0 is one of the com-
parison operators.

We recursively build up formulae from atoms using the following rules:

« An atom is a formula.

« If F| and F, are formulae, so are their conjunction F; F, their disjunction
F, F, and the negation ~F.

+ If F is a formula with free variable X, then (IX)(F) and (VX)(F) are also formulae.

EXAMPLE 5.14 Tuple relational calculus
(a) List the names of all managers who earn more than £25,000.
{S.fName, S.IName | Staff(S) S.position = ‘Manager’ S.salary > 25000}
(b) List the staff who manage properties for rent in Glasgow.
{S | Staff(S) (3IP) (PropertyForRent(P) (P.staffNo = S.staffNo) P.city = ‘Glasgow’)}

The staffNo attribute in the PropertyForRent relation holds the staff number of the member
of staff who manages the property. We could reformulate the query as: “For each member
of staff whose details we want to list, there exists a tuple in the relation PropertyForRent
for that member of staff with the value of the attribute city in that tuple being Glasgow.”

Note that in this formulation of the query, there is no indication of a strategy for
executing the query—the DBMS is free to decide the operations required to fulfil the
request and the execution order of these operations. On the other hand, the equivalent
relational algebra formulation would be: “Select tuples from PropertyForRent such that
the city is Glasgow and perform their join with the Staff relation,” which has an implied
order of execution.

¢) List the names of staff who currently do not manage any properties.
List th h ly d ge any properti
{S.fName, S.IName | Staff(S) (~(3P) (PropertyForRent(P) (S.staffNo = P.staffNo)))}

Using the general transformation rules for quantifiers given previously, we can rewrite
this as:

{S.fName, S.IName | Staff(S) ((VP) (~PropertyForRent(P) ~(S.staffNo = P.staffNo)))}
(d) List the names of clients who have viewed a property for rent in Glasgow.

{C.tName, C.IName | Client(C) ((3V) (3P) (Viewing(V) PropertyForRent(P)

(C.clientNo = V.clientNo) (V.propertyNo = P.propertyNo) P.city = ‘Glasgow’))}

183

184

Chapter 5 Relational Algebra and Relational Calculus

To answer this query, note that we can rephrase “clients who have viewed a property in
Glasgow” as “clients for whom there exists some viewing of some property in Glasgow.”

(e) List all cities where there is either a branch office or a property for rent.

{T.city | (3B) (Branch(B) (B.city = T.city)) (IP) (PropertyForRent(P) (P.city = T.city))}
Compare this with the equivalent relational algebra expression given in Example 5.3.
(f) List all the cities where there is a branch office but no properties for rent.

{B.city | Branch(B) (~(3P) (PropertyForRent(P) (B.city = P.city)))}

Compare this with the equivalent relational algebra expression given in Example 5.4.
(g) List all the cities where there is both a branch office and at least one property for rent.
{B.city | Branch(B) ((3P) (PropertyForRent(P) (B.city = P.city)))}

Compare this with the equivalent relational algebra expression given in Example 5.5.

Safety of expressions

Before we complete this section, we should mention that it is possible for a calculus
expression to generate an infinite set. For example:

{S | ~ Staff(S)}

would mean the set of all tuples that are not in the Staff relation. Such an expression
is said to be unsafe. To avoid this, we have to add a restriction that all values that
appear in the result must be values in the domain of the expression E, denoted dom(E).
In other words, the domain of E is the set of all values that appear explicitly in E or
that appear in one or more relations whose names appear in E. In this example, the
domain of the expression is the set of all values appearing in the Staff relation.

An expression is safe if all values that appear in the result are values from the
domain of the expression. The previous expression is not safe, as it will typically
include tuples from outside the Staff relation (and so outside the domain of the
expression). All other examples of tuple relational calculus expressions in this sec-
tion are safe. Some authors have avoided this problem by using range variables that
are defined by a separate RANGE statement. The interested reader is referred to
Date (2000).

5.2.2 Domain Relational Calculus

In the tuple relational calculus, we use variables that range over tuples in a relation.
In the domain relational calculus, we also use variables, but in this case the vari-
ables take their values from domains of attributes rather than tuples of relations. An
expression in the domain relational calculus has the following general form:

{didh i d [F by d)} m=m

where d,, d,, ..., d, ..., d, represent domain variables and F(d, d, ..., d,) represents
a formula composed of atoms, where each atom has one of the following forms:

* R(d, d, ..., d,), where R is a relation of degree n and each d is a domain
variable.

5.2 The Relational Calculus

+ d,0 d, where d and d, are domain variables and 6 is one of the comparison opera-
tors (<, =, >, =, =, #); the domains d, and d must have members that can be
compared by 6.

+ d 0 ¢, where d, is a domain variable, ¢ is a constant from the domain of d, and 6 is

one of the comparison operators.
We recursively build up formulae from atoms using the following rules:

« An atom is a formula.

« If F| and F, are formulae, so are their conjunction F, F,, their disjunction
F, F,, and the negation ~F,.
+ If Fis a formula with domain variable X, then (IX)(F) and (VX)(F) are also formulae.

EXAMPLE 5.15 Domain relational calculus

In the following examples, we use the following shorthand notation:
@3d,, d,, . . ., dy) in place of 3d,), Ady), . . ., (3d,)

(a) Find the names of all managers who earn more than £25,000.

{fN, IN | (3sN, posn, sex, DOB, sal, bN) (Staff(sN, fN, IN, posn, sex, DOB, sal, bN)
posn = ‘Manager’ sal > 25000)}

If we compare this query with the equivalent tuple relational calculus query in Example
5.14(a), we see that each attribute is given a (variable) name. The condition Staff(sN,
fN, . . ., bN) ensures that the domain variables are restricted to be attributes of the
same tuple. Thus, we can use the formula posn = ‘Manager’, rather than Staff.position =
‘Manager’. Also note the difference in the use of the existential quantifier. In the tuple
relational calculus, when we write Iposn for some tuple variable posn, we bind the vari-
able to the relation Staff by writing Staff(posn). On the other hand, in the domain rela-
tional calculus posn refers to a domain value and remains unconstrained until it appears
in the subformula Staff(sN, fN, IN, posn, sex, DOB, sal, bN), when it becomes constrained
to the position values that appear in the Staff relation.

For conciseness, in the remaining examples in this section we quantify only those
domain variables that actually appear in a condition (in this example, posn and sal).

(b) List the staff who manage properties for rent in Glasgow.

{sN, fN, IN, posn, sex, DOB, sal, bN | (IsN1, cty) (Staff(sN, fN, IN, posn, sex, DOB, sal, bN)
PropertyForRent(pN, st, cty, pc, typ, rms, mt, oN, sN1, bN1) (sN = sN1)
cty = ‘Glasgow’)}

This query can also be written as:

{sN, fN, IN, posn, sex, DOB, sal, bN | (Staff(sN, fN, IN, posn, sex, DOB, sal, bN)
PropertyForRent(pN, st, ‘Glasgow’, pc, typ, rms, mt, oN, sN, bN1))}

In this version, the domain variable cty in PropertyForRent has been replaced with the
constant “Glasgow” and the same domain variable sN, which represents the staff num-
ber, has been repeated for Staff and PropertyForRent.

(c) List the names of staff who currently do not manage any properties for rent.

{fN, IN | (3sN) (Staff(sN, fN, IN, posn, sex, DOB, sal, bN)
(~(3sN1) (PropertyForRent(pN, st, cty, pc, typ, rms, rnt, oN, sN1, bN1) (sN = sN1))))}

185

186

Chapter 5 Relational Algebra and Relational Calculus

(d) List the names of clients who have viewed a property for rent in Glasgow.

{fN, IN | (3cN, cN1, pN, pN1, cty) (Client(cN, fN, IN, tel, pT, mR, eM)
Viewing(cN1, pN1, dt, cmt) PropertyForRent(pN, st, cty, pc, typ, rms, rnt, oN, sN, bN)
(cN =cN1) (pN = pN1) cty = ‘Glasgow’)}

(e) List all cities where there is either a branch office or a property for rent.

{cty | (Branch(bN, st, cty, pc)
PropertyForRent(pN, st1, cty, pc1, typ, rms, rnt, oN, sN, bN1))}

(f) List all the cities where there is a branch office but no properties for rent.

{cty | (Branch(bN, st, cty, pc)
(~(3cty1)(PropertyForRent(pN, st1, cty1, pc1, typ, rms, rnt, oN, sN, bN1) (cty = cty1))))}

(g) List all the cities where there is both a branch office and at least one property for rent.

{cty | (Branch(bN, st, cty, pc)

(cty1) (PropertyForRent(pN, st1, ctyl, pc1, typ, rms, rnt, oN, sN, bN1) (cty = ctyl)))}
These queries are safe. When the domain relational calculus is restricted to safe
expressions, it is equivalent to the tuple relational calculus restricted to safe expres-
sions, which in turn is equivalent to the relational algebra. This means that for every
relational algebra expression there is an equivalent expression in the relational
calculus, and for every tuple or domain relational calculus expression there is an
equivalent relational algebra expression.

5.3 Other Languages

|

Although the relational calculus is hard to understand and use, it was recognized
that its nonprocedural property is exceedingly desirable, and this resulted in a
search for other easy-to-use nonprocedural techniques. This led to another two
categories of relational languages: transform-oriented and graphical.

Transform-oriented languages are a class of nonprocedural languages that
use relations to transform input data into required outputs. These languages
provide easy-to-use structures for expressing what is desired in terms of what is
known. SQUARE (Boyce el al., 1975), SEQUEL (Chamberlin et al., 1976), and
SEQUEL’s offspring, SQL, are all transform-oriented languages. We discuss SQL
in Chapters 6-9.

Graphical languages provide the user with a picture or illustration of the struc-
ture of the relation. The user fills in an example of what is wanted and the system
returns the required data in that format. QBE (Query-By-Example) is an example
of a graphical language (Zloof, 1977). We demonstrate the capabilities of QBE in
Appendix M.

Another category is fourth-generation languages (4GLs), which allow a complete
customized application to be created using a limited set of commands in a user-
friendly, often menu-driven environment (see Section 2.2). Some systems accept a
form of natural language, a restricted version of natural English, sometimes called a
fifth-generation language (5GL), although this development is still at an early stage.

Review Questions 187

Chapter Summary

+ The relational algebra is a (high-level) procedural language: it can be used to tell the DBMS how to build a
new relation from one or more relations in the database. The relational calculus is a nonprocedural language:
it can be used to formulate the definition of a relation in terms of one or more database relations. However,
formally the relational algebra and relational calculus are equivalent to one another: for every expression in the
algebra, there is an equivalent expression in the calculus (and vice versa).

+ The relational calculus is used to measure the selective power of relational languages. A language that can be used
to produce any relation that can be derived using the relational calculus is said to be relationally complete.
Most relational query languages are relationally complete but have more expressive power than the relational
algebra or relational calculus because of additional operations such as calculated, summary, and ordering functions.

+ The five fundamental operations in relational algebra—Selection, Projection, Cartesian product, Union, and Set
difference—perform most of the data retrieval operations that we are interested in. In addition, there are also the
Join, Intersection, and Division operations, which can be expressed in terms of the five basic operations.

+ The relational calculus is a formal nonprocedural language that uses predicates. There are two forms of the
relational calculus: tuple relational calculus and domain relational calculus.

« In the tuple relational calculus, we are interested in finding tuples for which a predicate is true. A tuple variable
is a variable that “ranges over” a named relation: that is, a variable whose only permitted values are tuples of the
relation.

 In the domain relational calculus, domain variables take their values from domains of attributes rather than
tuples of relations.

+ The relational algebra is logically equivalent to a safe subset of the relational calculus (and vice versa).

Relational data manipulation languages are sometimes classified as procedural or nonprocedural, transform-
oriented, graphical, fourth-generation, or fifth-generation.

Review Questions

5.1 What is the difference between a procedural and a nonprocedural language!? How would you classify the relational
algebra and relational calculus?

5.2 Explain the following terms:
() tuple relational calculus
(b) domain relational calculus

5.3 Define the five basic relational algebra operations. Define the Join, Intersection, and Division operations in terms of
these five basic operations.

5.4 Discuss the differences between the five Join operations: Theta join, Equijoin, Natural join, Outer join, and
Semijoin. Give examples to illustrate your answer.

5.5 There are different types of join operations that can be used to retrieve data, based on different relations.
Describe the relation between theta and equal join.

5.6 Define the structure of a (well-formed) formula in both the tuple relational calculus and domain relational calculus.

5.7 What is the difference between existential and universal quantifiers in relational calculus! Give examples to
elaborate how the two are applied in a statement.

(==
Qo
o 2]

Chapter 5 Relational Algebra and Relational Calculus

Exercises

For the following exercises, use the Hotel schema defined at the start of the Exercises at the end of Chapter 4.

5.8 Describe the relations that would be produced by the following relational algebra operations:
(@) Mhoene(Tprice > so(ROOM))
(b) Oioternoteino = Room.noteino(HOtEI X Room)
(©) Icteimame(HOtel Pigiet noteinio - Room hoteiNo(Tprice > s0(ROOM)))
(d) Guest >4 (T gateto = “1-san-2007(BOOKING))
(e) Hotel > oieihoteino = RoomhoteiNo(Tprice > s0(ROOM))
(f) ngestName. hotelNo(BOOKing 2 Booking.guestNo = Guest.guestNo Guest) - Hho!elNo(o-city = ‘London’(HOtEI))

5.9 Provide the equivalent tuple relational calculus and domain relational calculus expressions for each of the relational
algebra queries given in Exercise 5.8.

5.10 Describe the relations that would be produced by the following tuple relational calculus expressions:

(2) {H.hoteIName | Hotel(H) H.city = ‘London’}

(b) {H.hotelName | Hotel(H) (3R) (Room(R) H.hotelNo = R.hotelNo R.price > 50)}

(c) {H.hotelName | Hotel(H) (3B) (3G) (Booking(B) Guest(G) H.hoteINo = B.hotelNo
B.guestNo = G.guestNo G.guestName = ‘John Smith’)}

(d) {H.hoteIName, G.guestName, B1.dateFrom, B2.dateFrom | Hotel(H) Guest(G) Booking(B1)
Booking(B2) H.hotelNo = B1.hotelNo G.guestNo = B1.guestNo B2.hotelNo = B1.hotelNo
B2.guestNo = B1.guestNo B2.dateFrom # B1.dateFrom}

5.11 Provide the equivalent domain relational calculus and relational algebra expressions for each of the tuple relational
calculus expressions given in Exercise 5.10.

5.12 Generate the relational algebra, tuple relational calculus, and domain relational calculus expressions for the follow-
ing queries:
(a) List all hotels.
(b) List all single rooms with a price below £20 per night.
(¢) List the names and cities of all guests.
(d) List the price and type of all rooms at the Grosvenor Hotel.
(e) List all guests currently staying at the Grosvenor Hotel.
(f) List the details of all rooms at the Grosvenor Hotel, including the name of the guest staying in the room, if the
room is occupied.
(g) List the guest details (guestNo, guestName, and guestAddress) of all guests staying at the Grosvenor Hotel.

5.13 Using relational algebra, produce a report of all employees from the IT and planning departments who are born
after 1990.

The following tables form part of a database held in an RDBMS:

Employee (empNo, fName, IName, address, DOB, sex, position, deptNo)

Department (deptNo, deptName, mgrEmpNo)
(
(

Project projNo, projName, deptNo)
WorksOn empNo, projNo, dateWorked, hoursWorked)

where Employee contains employee details and empNo is the key.
Department contains department details and deptNo is the key. mgrEmpNo identifies the
employee who is the manager of the department. There is only one manager for
each department.

Project contains details of the projects in each department and the key is projNo (no
two departments can run the same project).
and WorksOn contains details of the hours worked by employees on each project, and empNo/

projNo/dateWorked form the key.

Exercises 189

Formulate the following queries in relational algebra, tuple relational calculus, and domain relational calculus.
5.14 List all employees.

5.15 List all the details of employees who are female and born after 1990.

5.16 List all employees who are not managers and are paid more than $1500.

5.17 Produce a list of the names and addresses of all employees who work for the IT department.

5.18 Produce a list of the names of all employees who work on the SCCS project.

5.19 Produce a complete list of all managers who are due to retire this year, in alphabetical order of surname.
Formulate the following queries in relational algebra.

5.20 Find out how many managers are female.

5.21 Produce a report of all projects under the IT department.

5.22 Using the union operator, retrieve the list of employees who are neither managers nor supervisors. Attributes to
be retrieved are first name, last name, position, sex and department number.

5.23 List the total number of employees in each department for those departments with more than |0 employees.
Create an appropriate heading for the columns of the results table.

The following tables form part of a Library database held in an RDBMS:

Book (ISBN, title, edition, year)
BookCopy (copyNo, ISBN, available)
Borrower (borrowerNo, borrowerName, borrowerAddress)
BookLoan (copyNo, dateOut, dateDue, borrowerNo)
where Book contains details of book titles in the library and the ISBN is the key.
BookCopy contains details of the individual copies of books in the library and copyNo is the
key. ISBN is a foreign key identifying the book title.
Borrower contains details of library members who can borrow books and borrowerNo is
the key.
BookLoan contains details of the book copies that are borrowed by library members and
copyNo/dateOut forms the key. borrowerNo is a foreign key identifying the
borrower.

Formulate the following queries in relational algebra, tuple relational calculus, and domain relational calculus.
5.24 List all book titles.

5.25 List all borrower details.

5.26 List all book titles published in the year 2012.

5.27 List all copies of book titles that are available for borrowing.

5.28 List all copies of the book title Lord of the Rings that are available for borrowing.

5.29 List the names of borrowers who currently have the book title Lord of the Rings on loan.
5.30 List the names of borrowers with overdue books.

Formulate the following queries in relational algebra.

5.31 How many copies of ISBN “0-321-52306-7" are there?

5.32 How many copies of ISBN “0-321-52306-7" are currently available?

5.33 How many times has the book title with ISBN “0-321-52306-7" been borrowed?

5.34 Produce a report of book titles that have been borrowed by “Peter Bloomfield.”

190 Chapter 5 Relational Algebra and Relational Calculus

5.35 For each book title with more than three copies, list the names of library members who have borrowed them.
5.36 Produce a report with the details of borrowers who currently have books overdue.
5.37 Produce a report detailing how many times each book title has been borrowed.

5.38 Analyze the RDBMSs that you are currently using. What types of relational language does the system provide?

For each of the languages provided, what are the equivalent operations for the eight relational algebra operations
defined in Section 5.17

CHAPTER

SQL: Data Manipulation

Chapter Objectives
In this chapter you will learn:

* The purpose and importance of the Structured Query Language (SQL).
* The history and development of SQL.
¢ How to write an SQL command.
* How to retrieve data from the database using the SELECT statement.
¢ How to build SQOL statements that:
— use the WHERE clause to retrieve rows that satisfy various conditions;
— sort query results using ORDER BY;
— use the aggregate functions of SQOL;
— group data using GROUP BY;
— use subqueries;
— join tables together;
— perform set operations (UNION, INTERSECT, EXCEPT).
* How to perform database updates using INSERT, UPDATE, and DELETE.

In Chapters 4 and 5 we described the relational data model and relational lan-
guages in some detail. A particular language that has emerged from the develop-
ment of the relational model is the Structured Query Language, or SQL as it is
commonly called. Over the last few years, SQL has become the standard relational
database language. In 1986, a standard for SQL was defined by the American
National Standards Institute (ANSI) and was subsequently adopted in 1987 as an
international standard by the International Organization for Standardization
(ISO, 1987). More than one hundred DBMSs now support SQL, running on vari-
ous hardware platforms from PCs to mainframes.

Owing to the current importance of SQL, we devote four chapters and an
appendix of this book to examining the language in detail, providing a com-
prehensive treatment for both technical and nontechnical users including pro-
grammers, database professionals, and managers. In these chapters we largely

191

192

Chapter 6 SQL: Data Manipulation

concentrate on the ISO definition of the SQL language. However, owing to the
complexity of this standard, we do not attempt to cover all parts of the language. In
this chapter, we focus on the data manipulation statements of the language.

Structure of this Chapter In Section 6.1 we introduce SQL and discuss
why the language is so important to database applications. In Section 6.2 we
introduce the notation used in this book to specify the structure of an SQL state-
ment. In Section 6.3 we discuss how to retrieve data from relations using SQL,
and how to insert, update, and delete data from relations.

Looking ahead, in Chapter 7 we examine other features of the language,
including data definition, views, transactions, and access control. In Chapter 8 we
examine more advanced features of the language, including triggers and stored
procedures. In Chapter 9 we examine in some detail the features that have been
added to the SQL specification to support object-oriented data management. In
Appendix I we discuss how SQL can be embedded in high-level programming
languages to access constructs that were not available in SQL until very recently.
The two formal languages, relational algebra and relational calculus, that we
covered in Chapter 5 provide a foundation for a large part of the SQL standard
and it may be useful to refer to this chapter occasionally to see the similarities.
However, our presentation of SQL is mainly independent of these languages for
those readers who have omitted Chapter 5. The examples in this chapter use the
DreamHome rental database instance shown in Figure 4.3.

6.1 Introduction to SQL

[

In this section we outline the objectives of SQL, provide a short history of the lan-
guage, and discuss why the language is so important to database applications.

6.1.1 Objectives of SQL

Ideally, a database language should allow a user to:

- create the database and relation structures;

« perform basic data management tasks, such as the insertion, modification, and
deletion of data from the relations;

- perform both simple and complex queries.

A database language must perform these tasks with minimal user effort, and its
command structure and syntax must be relatively easy to learn. Finally, the lan-
guage must be portable; that is, it must conform to some recognized standard so
that we can use the same command structure and syntax when we move from one
DBMS to another. SQL is intended to satisfy these requirements.

SQL is an example of a transform-oriented language, or a language designed
to use relations to transform inputs into required outputs. As a language, the ISO
SQL standard has two major components:

6.1 Introduction to SQL

+ a Data Definition Language (DDL) for defining the database structure and con-
trolling access to the data;

+ a Data Manipulation Language (DML) for retrieving and updating data.

Until the 1999 release of the standard, known as SQL:1999 or SQL3, SQL con-
tained only these definitional and manipulative commands; it did not contain
flow of control commands, such as IF . . . THEN . .. ELSE, GO TO, or DO . ..
WHILE. These commands had to be implemented using a programming or job-
control language, or interactively by the decisions of the user. Owing to this lack of
computational completeness, SQL can be used in two ways. The first way is to use SQL
interactively by entering the statements at a terminal. The second way is to embed
SQL statements in a procedural language, as we discuss in Appendix I. We also
discuss the latest release of the standard, SQL:2011 in Chapter 9.
SQL is a relatively easy language to learn:

« It is a nonprocedural language; you specify what information you require, rather
than how to get it. In other words, SQL does not require you to specify the access
methods to the data.

+ Like most modern languages, SQL is essentially free-format, which means that
parts of statements do not have to be typed at particular locations on the screen.

« The command structure consists of standard English words such as CREATE
TABLE, INSERT, SELECT. For example:

— CREATE TABLE Staff (staffNo VARCHAR(5), IName VARCHAR(15), salary
DECIMAL(7,2));

— INSERT INTO Staff VALUES (‘SG16°, ‘Brown’, 8300);

— SELECT staffNo, IName, salary
FROM Staff
WHERE salary > 10000;

+ SQL can be used by a range of users including database administrators (DBA),
management personnel, application developers, and many other types of end-user.

An international standard now .exists for the SQL language making it both the
tormal and de facto standard language for defining and manipulating relational
databases (ISO, 1992, 2011a).

6.1.2 History of SQL

As stated in Chapter 4, the history of the relational model (and indirectly SQL)
started with the publication of the seminal paper by E. F. Codd, written during
his work at IBM’s Research Laboratory in San José (Codd, 1970). In 1974, D.
Chamberlin, also from the IBM San José Laboratory, defined a language called the
Structured English Query Language, or SEQUEL. A revised version, SEQUEL/2,
was defined in 1976, but the name was subsequently changed to SQL for legal rea-
sons (Chamberlin and Boyce, 1974; Chamberlin et al., 1976). Today, many people
still pronounce SQL as “See-Quel,” though the official pronunciation is “S-Q-L.”
IBM produced a prototype DBMS based on SEQUEL/2 called System R (Astrahan
etal., 1976). The purpose of this prototype was to validate the feasibility of the rela-
tional model. Besides its other successes, one of the most important results that has
been attributed to this project was the development of SQL. However, the roots of

193

194

Chapter 6 SQL: Data Manipulation

SQL are in the language SQUARE (Specifying Queries As Relational Expressions),
which predates the System R project. SQUARE was designed as a research language
to implement relational algebra with English sentences (Boyce et al., 1975).

In the late 1970s, the database system Oracle was produced by what is now called
the Oracle Corporation, and was probably the first commercial implementation
of a relational DBMS based on SQL. INGRES followed shortly afterwards, with a
query language called QUEL, which although more “structured” than SQL, was
less English-like. When SQL emerged as the standard database language for rela-
tional systems, INGRES was converted to an SQL-based DBMS. IBM produced
its first commercial RDBMS, called SQL/DS, for the DOS/VSE and VM/CMS envi-
ronments in 1981 and 1982, respectively, and subsequently as DB2 for the MVS
environment in 1983.

In 1982, ANSI began work on a Relational Database Language (RDL) based on a
concept paper from IBM. ISO joined in this work in 1983, and together they defined
a standard for SQL. (The name RDL was dropped in 1984, and the draft standard
reverted to a form that was more like the existing implementations of SQL.)

The initial ISO standard published in 1987 attracted a considerable degree of
criticism. Date, an influential researcher in this area, claimed that important features
such as referential integrity constraints and certain relational operators had been
omitted. He also pointed out that the language was extremely redundant; in other
words, there was more than one way to write the same query (Date, 1986, 1987a,
1990). Much of the criticism was valid, and had been recognized by the standards
bodies before the standard was published. It was decided, however, that it was more
important to release a standard as early as possible to establish a common base from
which the language and the implementations could develop than to wait until all the
features that people felt should be present could be defined and agreed.

In 1989, ISO published an addendum that defined an “Integrity Enhancement
Feature” (ISO, 1989). In 1992, the first major revision to the ISO standard
occurred, sometimes referred to as SQL2 or SQL-92 (ISO, 1992). Although some
features had been defined in the standard for the first time, many of these had
already been implemented in part or in a similar form in one or more of the many
SQL implementations. It was not until 1999 that the next release of the standard,
commonly referred to as SQL:1999 (ISO, 1999a), was formalized. This release
contains additional features to support object-oriented data management, which
we examine in Chapter 9. There have been further releases of the standard in late
2003 (SQL:2003), in summer 2008 (SQL:2008), and in late 2011 (SQL:2011).

Features that are provided on top of the standard by the vendors are called
extensions. For example, the standard specifies six different data types for data
in an SQL database. Many implementations supplement this list with a variety of
extensions. Each implementation of SQL is called a dialect. No two dialects are
exactly alike, and currently no dialect exactly matches the ISO standard. Moreover,
as database vendors introduce new functionality, they are expanding their SQL
dialects and moving them even further apart. However, the central core of the
SQL language is showing signs of becoming more standardized. In fact, SQL
now has a set of features called Core SQL that a vendor must implement to claim
conformance with the SQL standard. Many of the remaining features are divided
into packages; for example, there are packages for object features and OLAP
(OnLine Analytical Processing).

6.2 Writing SQL Commands

Although SQI was originally an IBM concept, its importance soon motivated other
vendors to create their own implementations. Today there are literally hundreds of
SQL-based products available, with new products being introduced regularly.

6.1.3 Importance of SQL

SQL is the first and, so far, only standard database language to gain wide accept-
ance. The only other standard database language, the Network Database Language
(NDL), based on the CODASYL network model, has few followers. Nearly every
major current vendor provides database products based on SQL or with an SQL
interface, and most are represented on at least one of the standard-making bodies.
There is a huge investment in the SQL language both by vendors and by users. It
has become part of application architectures such as IBM’s Systems Application
Architecture (SAA) and is the strategic choice of many large and influential organi-
zations, for example, the Open Group consortium for UNIX standards. SQL has
also become a Federal Information Processing Standard (FIPS) to which conform-
ance is required for all sales of DBMSs to the U.S. government. The SQL Access
Group, a consortium of vendors, defined a set of enhancements to SQL that would
support interoperability across disparate systems.

SQL is used in other standards and even influences the development of other
standards as a definitional tool. Examples include ISO’s Information Resource
Dictionary System (IRDS) standard and Remote Data Access (RDA) standard.
The development of the language is supported by considerable academic interest,
providing both a theoretical basis for the language and the techniques needed to
implement it successfully. This is especially true in query optimization, distribution
of data, and security. There are now specialized implementations of SQL that are
directed at new markets, such as OnLine Analytical Processing (OLAP).

6.1.4 Terminology

The ISO SQL standard does not use the formal terms of relations, attributes, and
tuples, instead using the terms tables, columns, and rows. In our presentation of
SQL we mostly use the ISO terminology. It should also be noted that SQL does not
adhere strictly to the definition of the relational model described in Chapter 4. For
example, SQL allows the table produced as the result of the SELECT statement to
contain duplicate rows, it imposes an ordering on the columns, and it allows the
user to order the rows of a result table.

6.2 Writing SQL Commands

-

In this section we briefly describe the structure of an SQL statement and the nota-
tion we use to define the format of the various SQL constructs. An SQL statement
consists of reserved words and user-defined words. Reserved words are a fixed
part of the SQL language and have a fixed meaning. They must be spelled exactly
as required and cannot be split across lines. User-defined words are made up by
the user (according to certain syntax rules) and represent the names of various
database objects such as tables, columns, views, indexes, and so on. The words in
a statement are also built according to a set of syntax rules. Although the standard

195

196

Chapter 6 SQL: Data Manipulation

does not require it, many dialects of SQL require the use of a statement terminator
to mark the end of each SQL statement (usually the semicolon “;” is used).

Most components of an SQL statement are case-insensitive, which means that
letters can be typed in either upper- or lowercase. The one important exception
to this rule is that literal character data must be typed exactly as it appears in the
database. For example, if we store a person’s surname as “SMITH” and then search
for it using the string “Smith,” the row will not be found.

Although SQL is free-format, an SQL statement or set of statements is more
readable if indentation and lineation are used. For example:

« each clause in a statement should begin on a new line;

- the beginning of each clause should line up with the beginning of other clauses;

- if a clause has several parts, they should each appear on a separate line and be
indented under the start of the clause to show the relationship.

Throughout this and the next three chapters, we use the following extended form
of the Backus Naur Form (BNF) notation to define SQL statements:

« uppercase letters are used to represent reserved words and must be spelled
exactly as shown;

+ lowercase letters are used to represent user-defined words;

« avertical bar (|) indicates a choice among alternatives; for example, a | b | ¢;

- curly braces indicate a required element; for example, {a};

- square brackets indicate an optional element; for example, [a];

- an ellipsis (. . .) is used to indicate optional repetition of an item zero or more times.
For example:
{alb} (,c...)
means either a or b followed by zero or more repetitions of ¢ separated by commas.

In practice, the DDL statements are used to create the database structure (that
is, the tables) and the access mechanisms (that is, what each user can legally
access), and then the DML statements are used to populate and query the tables.
However, in this chapter we present the DML before the DDL statements to reflect
the importance of DML statements to the general user. We discuss the main DDL
statements in the next chapter.

6.3 Data Manipulation

-

This section looks at the following SQL DML statements:

« SELECT - to query data in the database
« INSERT - to insert data into a table

« UPDATE - to update data in a table

« DELETE - to delete data from a table

Owing to the complexity of the SELECT statement and the relative simplicity
of the other DML statements, we devote most of this section to the SELECT

6.3 Data Manipulation | 197

statement and its various formats. We begin by considering simple queries, and suc-
cessively add more complexity to show how more complicated queries that use sort-
ing, grouping, aggregates, and also queries on multiple tables can be generated. We

end the chapter by considering the INSERT, UPDATE, and DELETE statements. .\
We illustrate the SQL statements using the instance of the DreamHome case study ﬁﬁ

shown in Figure 4.3, which consists of the following tables: AV 4
Branch (branchNo, street, city, postcode)
Staff (staffNo, fName, IName, position, sex, DOB, salary, branchNo)
PropertyForRent (propertyNo, street, city, postcode, type, rooms, rent, ownerNo, staffNo,
branchNo)
Client (clientNo, fName, IName, telNo, prefType, maxRent, eMail)
PrivateOwner (ownerNo, fName, IName, address, telNo, eMail, password)
Viewing (clientNo, propertyNo, viewDate, comment)
Literals

Before we discuss the SQL DML statements, it is necessary to understand the con-
cept of literals. Literals are constants that are used in SQL statements. There are
different forms of literals for every data type supported by SQL (see Section 7.1.1).
However, for simplicity, we can distinguish between literals that are enclosed in
single quotes and those that are not. All nonnumeric data values must be enclosed
in single quotes; all numeric data values must not be enclosed in single quotes. For
example, we could use literals to insert data into a table:

INSERT INTO PropertyForRent(propertyNo, street, city, postcode, type, rooms, rent,
ownerNo, staffNo, branchNo)
VALUES (‘PA14°, ‘16 Holhead’, ‘Aberdeen’, ‘AB7 5SU’, ‘House’, 6, 650.00,
‘CO46’, 'SA9’, ‘BO07’);
The value in column rooms is an integer literal and the value in column rent is a
decimal number literal; they are not enclosed in single quotes. All other columns
are character strings and are enclosed in single quotes.

6.3.1 Simple Queries

The purpose of the SELECT statement is to retrieve and display data from one or
more database tables. It is an extremely powerful command, capable of perform-
ing the equivalent of the relational algebra’s Selection, Projection, and Join opera-
tions in a single statement (see Section 5.1). SELECT is the most frequently used
SQL command and has the following general form:

SELECT [DISTINCT | ALL] {* | [columnExpression [AS newName]] [, . . .]}
FROM TableName [alias] [, . . .]
[WHERE condition]

[GROUP BY columnList] [HAVING condition]
[ORDER BY columnList]

198

Chapter 6 SQL: Data Manipulation

columnExpression represents a column name or an expression, TableName is the
name of an existing database table or view that you have access to, and alias is an
optional abbreviation for TableName. The sequence of processing in a SELECT
statement is:

FROM specifies the table or tables to be used

WHERE filters the rows subject to some condition

GROUP BY forms groups of rows with the same column value
HAVING filters the groups subject to some condition

SELECT specifies which columns are to appear in the output

ORDER BY specifies the order of the output

The order of the clauses in the SELECT statement cannot be changed. The only
two mandatory clauses are the first two: SELECT and FROM; the remainder are
optional. The SELECT operation is closed: the result of a query on a table is
another table (see Section 5.1). There are many variations of this statement, as we
now illustrate.

Retrieve all rows

EXAMPLE 6.1 Retrieve all columns, all rows

List full details of all staff.

Because there are no restrictions specified in this query, the WHERE clause is unneces-
sary and all columns are required. We write this query as:

SELECT staffNo, fName, IName, position, sex, DOB, salary, branchNo
FROM Staff;

Because many SQL retrievals require all columns of a table, there is a quick way of
expressing “all columns” in SQL, using an asterisk (*) in place of the column names.
The following statement is an equivalent and shorter way of expressing this query:

SELECT *
FROM Staff;

The result table in either case is shown in Table 6.1.

TABLE 6.1 Result table for Example 6.1.

staffNo fName IName position sex DOB salary branchNo
SL21 John White Manager M I-Oct-45 30000.00 B0OO5
SG37 Ann Beech Assistant F I0-Nov-60 12000.00 BOO3
SGl4 David Ford Supervisor M 24-Mar-58 [8000.00 BOO3
SA9 Mary Howe Assistant F [9-Feb-70 9000.00 B0OO7
SG5 Susan Brand Manager F 3-Jun-40 24000.00 B0OO3
SL41 Julie Lee Assistant F [3-Jun-65 9000.00 BOO5

6.3 Data Manipulation

EXAMPLE 6.2 Retrieve specific columns, all rows

Produce a list of salaries for all staff, showing only the staff number, the first and last names, and the
salary details.

SELECT staffNo, fName, IName, salary
FROM Staff;

In this example a new table is created from Staff containing only the designated columns
staffNo, fName, IName, and salary, in the specified order. The result of this operation is
shown in Table 6.2. Note that, unless specified, the rows in the result table may not
be sorted. Some DBMSs do sort the result table based on one or more columns (for
example, Microsoft Office Access would sort this result table based on the primary key
staffNo). We describe how to sort the rows of a result table in the next section.

TABLE 6.2 Result table for Example 6.2.

staffNo fName IName salary

SL21| John White 30000.00
SG37 Ann Beech 12000.00
SGl4 David Ford 18000.00
SA9 Mary Howe 9000.00
SG5 Susan Brand 24000.00
SL41 Julie Lee 9000.00

EXAMPLE 6.3 Use of DISTINCT
List the property numbers of all properties that have been viewed.

SELECT propertyNo
FROM Viewing;

The result table is shown in Table 6.3(a). Notice that there are several duplicates, because
unlike the relational algebra Projection operation (see Section 5.1.1), SELECT does not

TABLE 6.3(a) Result table for
Example 6.3 with duplicates.

propertyNo

PAI4
PG4
PG4
PAL4
PG36

199

200

Chapter 6 SQL: Data Manipulation

eliminate duplicates when it projects over one or more columns. To eliminate the dupli-
cates, we use the DISTINCT keyword. Rewriting the query as:

SELECT DISTINCT propertyNo
FROM Viewing;

we get the result table shown in Table 6.3(b) with the duplicates eliminated.

TABLE 6.3(b) Result table for Example
6.3 with duplicates eliminated.

propertyNo
PA 14

PG4
PG36

EXAMPLE 6.4 Calculated fields

Produce a list of monthly salaries for all staff, showing the staff number, the first and last names, and
the salary details.

SELECT staffNo, fName, IName, salary/12
FROM Staff;

This query is almost identical to Example 6.2, with the exception that monthly salaries
are required. In this case, the desired result can be obtained by simply dividing the
salary by 12, giving the result table shown in Table 6.4.

This is an example of the use of a calculated field (sometimes called a computed or
derived field). In general, to use a calculated field, you specify an SQL expression in
the SELECT list. An SQL expression can involve addition, subtraction, multiplication,
and division, and parentheses can be used to build complex expressions. More than one
table column can be used in a calculated column; however, the columns referenced in
an arithmetic expression must have a numeric type.

The fourth column of this result table has been output as col4. Normally, a column
in the result table takes its name from the corresponding column of the database table
from which it has been retrieved. However, in this case, SQL does not know how to
label the column. Some dialects give the column a name corresponding to its position

TABLE 6.4 Result table for Example 6.4.

staffNo fName IName col4

SL21 John White 2500.00
SG37 Ann Beech 1000.00
SGl4 David Ford 1500.00
SA9 Mary Howe 750.00
SG5 Susan Brand 2000.00

SL4| Julie Lee 750.00

6.3 Data Manipulation

in the table (for example, col4); some may leave the column name blank or use the
expression entered in the SELECT list. The ISO standard allows the column to be
named using an AS clause. In the previous example, we could have written:

SELECT staffNo, fName, IName, salary/12 AS monthlySalary
FROM Staff;

In this case, the column heading of the result table would be monthlySalary rather than col4.

Row selection (WHERE clause)

The previous examples show the use of the SELECT statement to retrieve all rows
from a table. However, we often need to restrict the rows that are retrieved. This
can be achieved with the WHERE clause, which consists of the keyword WHERE
tollowed by a search condition that specifies the rows to be retrieved. The five basic
search conditions (or predicates, using the ISO terminology) are as follows:

« Comparison Compare the value of one expression to the value of another
expression.

+ Range Test whether the value of an expression falls within a specified
range of values.

« Set membership Test whether the value of an expression equals one of a set of
values.

« Pattern match Test whether a string matches a specified pattern.

« Null Test whether a column has a null (unknown) value.

The WHERE clause is equivalent to the relational algebra Selection operation
discussed in Section 5.1.1. We now present examples of each of these types of
search conditions.

EXAMPLE 6.5 Comparison search condition

List all staff with a salary greater than £10,000.

SELECT staffNo, fName, IName, position, salary
FROM Staff
WHERE salary > 10000;

Here, the table is Staff and the predicate is salary > 10000. The selection creates a new
table containing only those Staff rows with a salary greater than £10,000. The result of
this operation is shown in Table 6.5.

TABLE 6.5 Result table for Example 6.5.

staffNo fName IName position salary

SL21 John White Manager 30000.00
SG37 Ann Beech Assistant 12000.00
SGl14 David Ford Supervisor 18000.00

SG5 Susan Brand Manager 24000.00

201

202

Chapter 6 SQL: Data Manipulation

In SQL, the following simple comparison operators are available:

= equals
<> is not equal to (ISO standard) !

is not equal to (allowed in
some dialects)

is less than or equal to

is greater than or equal to

< 1s less than <
> is greater than >

More complex predicates can be generated using the logical operators AND, OR,
and NOT, with parentheses (if needed or desired) to show the order of evaluation.
The rules for evaluating a conditional expression are:

- an expression is evaluated left to right;
+ subexpressions in brackets are evaluated first;

+ NOTs are evaluated before ANDs and ORs;
« ANDs are evaluated before ORs.

The use of parentheses is always recommended, in order to remove any possible
ambiguities.

EXAMPLE 6.6 Compound comparison search condition
List the addresses of all branch offices in London or Glasgow.

SELECT *
FROM Branch
WHERE city = ‘London’ OR city = ‘Glasgow’;

In this example the logical operator OR is used in the WHERE clause to find the branches
in London (city = ‘London’) or in Glasgow (city = ‘Glasgow’). The result table is shown in
Table 6.6.

TABLE 6.6 Result table for Example 6.6.

branchNo street city postcode
BOO5 22 Deer Rd London SWI 4EH
BOO3 163 Main St Glasgow GI'190QX
B0O2 56 Clover Dr London NW 10 6EU

EXAMPLE 6.7 Range search condition (BETWEEN/NOT BETWEEN)
List all staff with a salary between £20,000 and £30,000.

SELECT staffNo, fName, IName, position, salary
FROM Staff
WHERE salary BETWEEN 20000 AND 30000;

The BETWEEN test includes the endpoints of the range, so any members of staff with a
salary of £20,000 or £30,000 would be included in the result. The result table is shown
in Table 6.7.

6.3 Data Manipulation

TABLE 6.7 Result table for Example 6.7.

staffNo fName IName position salary
SL2| John White Manager 30000.00
SG5 Susan Brand Manager 24000.00

There is also a negated version of the range test (NOT BETWEEN) that checks for
values outside the range. The BETWEEN test does not add much to the expressive
power of SQL, because it can be expressed equally well using two comparison tests. We
could have expressed the previous query as:

SELECT staffNo, fName, IName, position, salary
FROM Staff
WHERE salary > = 20000 AND salary < = 30000;

However, the BETWEEN test is a simpler way to express a search condition when con-
sidering a range of values.

EXAMPLE 6.8 Set membership search condition (IN/NOT IN)
List all managers and supervisors.

SELECT staffNo, fName, IName, position
FROM Staff
WHERE position IN (‘Manager’, ‘Supervisor’);

The set membership test (IN) tests whether a data value matches one of a list of values,
in this case either ‘Manager’ or ‘Supervisor’. The result table is shown in Table 6.8.

TABLE 6.8 Result table for Example 6.8.

staffNo fName IName position
SL21 John White Manager
SGl14 David Ford Supervisor
SG5 Susan Brand Manager

There is a negated version (NOT IN) that can be used to check for data values that
do not lie in a specific list of values. Like BETWEEN, the IN test does not add much to
the expressive power of SQL. We could have expressed the previous query as:

SELECT staffNo, fName, IName, position
FROM Staff
WHERE position = ‘Manager’ OR position = ‘Supervisor’;

However, the IN test provides a more efficient way of expressing the search condition,
particularly if the set contains many values.

203

204

Chapter 6 SQL: Data Manipulation

EXAMPLE 6.9 Pattern match search condition (LIKE/NOT LIKE)

Find all owners with the string ‘Glasgow’ in their address.

For this query, we must search for the string ‘Glasgow’ appearing somewhere within the

address column of the PrivateOwner table. SQL has two special pattern-matching symbols:

+ The % percent character represents any sequence of zero or more characters (wildcard).

« The _ underscore character represents any single character.

All other characters in the pattern represent themselves. For example:

+ address LIKE ‘H%’ means the first character must be H, but the rest of the string can
be anything.

+ address LIKE ‘H_ _ _’ means that there must be exactly four characters in the string,
the first of which must be an H.

+ address LIKE ‘%e’ means any sequence of characters, of length at least 1, with the last
character an e.

+ address LIKE ‘%Glasgow%’ means a sequence of characters of any length containing
Glasgow.

+ address NOT LIKE ‘H%’ means the first character cannot be an H.

If the search string can include the pattern-matching character itself, we can use an
escape character to represent the pattern-matching character. For example, to check
for the string ‘15%’, we can use the predicate:

LIKE ‘15#% ESCAPE ‘#’

Using the pattern-matching search condition of SQL, we can find all owners with the
string “Glasgow” in their address using the following query, producing the result table
shown in Table 6.9:

SELECT ownerNo, fName, IName, address, telNo
FROM PrivateOwner
WHERE address LIKE ‘%Glasgow%’;

Note that some RDBMSs, such as Microsoft Office Access, use the wildcard characters
* and ? instead of % and _ .

TABLE 6.9 Result table for Example 6.9.

ownerNo fName IName address telNo

CcOo87 Carol Farrel 6 Achray St, Glasgow G32 9DX 0141-357-7419
CO40 Tina Murphy 63 Well St, Glasgow G42 0141-943-1728
CO93 Tony Shaw |2 Park PI, Glasgow G4 0QR 0141-225-7025

EXAMPLE 6.10 NULL search condition (IS NULL/IS NOT NULL)

List the details of all viewings on property PG4 where a comment has not been supplied.

From the Viewing table of Figure 4.3, we can see that there are two viewings for prop-

erty PG4: one with a comment, the other without a comment. In this simple example,

6.3 Data Manipulation

you may think that the latter row could be accessed by using one of the search
conditions:

(propertyNo = ‘PG4’ AND comment = *’)
or

‘PG4” AND comment < > ‘too remote’)

(propertyNo

However, neither of these conditions would work. A null comment is considered to have
an unknown value, so we cannot test whether it is equal or not equal to another string. If
we tried to execute the SELECT statement using either of these compound conditions,
we would get an empty result table. Instead, we have to test for null explicitly using the
special keyword IS NULL:

SELECT clientNo, viewDate
FROM Viewing
WHERE propertyNo = ‘PG4” AND comment IS NULL;

The result table is shown in Table 6.10. The negated version (IS NOT NULL) can be
used to test for values that are not null.

TABLE 6.10 Result table for Example 6.10.
clientNo viewDate

CR56 26-May-13

6.3.2 Sorting Results (ORDER BY Clause)

In general, the rows of an SQL query result table are not arranged in any particular
order (although some DBMSs may use a default ordering based, for example, on
a primary key). However, we can ensure the results of a query are sorted using the
ORDER BY clause in the SELECT statement. The ORDER BY clause consists of a
list of column identifiers that the result is to be sorted on, separated by commas. A
column identifier may be either a column name or a column number' that identi-
fies an element of the SELECT list by its position within the list, 1 being the first
(leftmost) element in the list, 2 the second element in the list, and so on. Column
numbers could be used if the column to be sorted on is an expression and no AS
clause is specified to assign the column a name that can subsequently be referenced.
The ORDER BY clause allows the retrieved rows to be ordered in ascending (ASC)
or descending (DESC) order on any column or combination of columns, regardless
of whether that column appears in the result. However, some dialects insist that the
ORDER BY elements appear in the SELECT list. In either case, the ORDER BY
clause must always be the last clause of the SELECT statement.

‘Column numbers are a deprecated feature of the ISO standard and should not be used.

205

206

Chapter 6 SQL: Data Manipulation

EXAMPLE 6.11 Single-column ordering
Produce a list of salaries for all staff, arranged in descending order of salary.

SELECT staffNo, fName, IName, salary
FROM Staff
ORDER BY salary DESC;

This example is very similar to Example 6.2. The difference in this case is that the
output is to be arranged in descending order of salary. This is achieved by adding
the ORDER BY clause to the end of the SELECT statement, specifying salary as the
column to be sorted, and DESC to indicate that the order is to be descending. In this
case, we get the result table shown in Table 6.11. Note that we could have expressed
the ORDER BY clause as: ORDER BY 4 DESC, with the 4 relating to the fourth column
name in the SELECT list, namely salary.

TABLE 6.11 Result table for Example 6.1 I.

staffNo fName IName salary

SL21 John White 30000.00
SG5 Susan Brand 24000.00
SGl14 David Ford 18000.00
SG37 Ann Beech 12000.00
SA9 Mary Howe 9000.00
SL41 Julie Lee 9000.00

It is possible to include more than one element in the ORDER BY clause. The
major sort key determines the overall order of the result table. In Example 6.11,
the major sort key is salary. If the values of the major sort key are unique, there is
no need for additional keys to control the sort. However, if the values of the major
sort key are not unique, there may be multiple rows in the result table with the same
value for the major sort key. In this case, it may be desirable to order rows with the
same value for the major sort key by some additional sort key. If a second element
appears in the ORDER BY clause, it is called a minor sort key.

EXAMPLE 6.12 Multiple column ordering
Produce an abbreviated list of properties arranged in order of property type.

SELECT propertyNo, type, rooms, rent
FROM PropertyForRent
ORDER BY type;

In this case we get the result table shown in Table 6.12(a).
There are four flats in this list. As we did not specify any minor sort key, the system
arranges these rows in any order it chooses. To arrange the properties in order of rent,

we specify a minor order, as follows:

Now, the result is ordered first by property type, in ascending alphabetic order (ASC
being the default setting), and within property type, in descending order of rent. In this
case, we get the result table shown in Table 6.12(b).

6.3.3 Using the SQL Aggregate Functions

SELECT propertyNo, type, rooms, rent
FROM PropertyForRent

ORDER BY type, rent DESC;

TABLE 6.12(a) Result table for Example 6.12 with

one sort key.
propertyNo

PL94
PG4
PG36
PGI6
PAl4
PG2I

TABLE 6.12(b) Result table for Example 6.12 with

two sort keys.
propertyNo

PGIl6
PL94
PG36
PG4
PAl4
PG2I

The ISO standard specifies that nulls in a column or expression sorted with ORDER
BY should be treated as either less than all nonnull values or greater than all nonnull
values. The choice is left to the DBMS implementor.

type
Flat
Flat
Flat
Flat
House

House

type
Flat
Flat
Flat
Flat
House

House

rooms

[O2Ne) R N UV UV I N

rooms

U0 W W AN DN

rent

400
350
375
450
650
600

rent

450
400
375
350
650
600

6.3

Data Manipulation

As well as retrieving rows and columns from the database, we often want to per-
form some form of summation or aggregation of data, similar to the totals at the
bottom of a report. The ISO standard defines five aggregate functions:

+ COUNT - returns the number of values in a specified column

SUM - returns the sum of the values in a specified column
AVG - returns the average of the values in a specified column
MIN - returns the smallest value in a specified column

MAX - returns the largest value in a specified column

207

208 Chapter 6 SQL: Data Manipulation

TABLE 6.13
Result table for
Example 6.13.

myCount

5

TABLE 6.14
Result table for
Example 6.14.

myCount

2

These functions operate on a single column of a table and return a single value.
COUNT, MIN, and MAX apply to both numeric and nonnumeric fields, but SUM
and AVG may be used on numeric fields only. Apart from COUNT(*), each func-
tion eliminates nulls first and operates only on the remaining nonnull values.
COUNT(*) is a special use of COUNT that counts all the rows of a table, regardless
of whether nulls or duplicate values occur.

If we want to eliminate duplicates before the function is applied, we use the key-
word DISTINCT before the column name in the function. The ISO standard allows
the keyword ALL to be specified if we do not want to eliminate duplicates, although
ALL is assumed if nothing is specified. DISTINCT has no effect with the MIN and
MAX functions. However, it may have an effect on the result of SUM or AVG, so
consideration must be given to whether duplicates should be included or excluded
in the computation. In addition, DISTINCT can be specified only once in a query.

It is important to note that an aggregate function can be used only in the
SELECT list and in the HAVING clause (see Section 6.3.4). It is incorrect to use it
elsewhere. If the SELECT list includes an aggregate function and no GROUP BY
clause is being used to group data together (see Section 6.3.4), then no item in the
SELECT list can include any reference to a column unless that column is the argu-
ment to an aggregate function. For example, the following query is illegal:

SELECT staffNo, COUNT (salary)
FROM Staff;

because the query does not have a GROUP BY clause and the column staffNo in the
SELECT list is used outside an aggregate function.

EXAMPLE 6.13 Use of COUNT(¥)
How many properties cost more than £350 per month to rent?

SELECT COUNT(*) AS myCount
FROM PropertyForRent
WHERE rent > 350;

Restricting the query to properties that cost more than £350 per month is achieved using
the WHERE clause. The total number of properties satisfying this condition can then be
found by applying the aggregate function COUNT. The result table is shown in Table 6.13.

EXAMPLE 6.14 Use of COUNT(DISTINCT)
How many different properties were viewed in May 2013?

SELECT COUNT(DISTINCT propertyNo) AS myCount
FROM Viewing
WHERE viewDate BETWEEN ‘1-May-13" AND ‘31-May-13’;

Again, restricting the query to viewings that occurred in May 2013 is achieved using
the WHERE clause. The total number of viewings satisfying this condition can then be
found by applying the aggregate function COUNT. However, as the same property may
be viewed many times, we have to use the DISTINCT keyword to eliminate duplicate
properties. The result table is shown in Table 6.14.

6.3 Data Manipulation

EXAMPLE 6.15 Use of COUNT and SUM
Find the total number of Managers and the sum of their salaries.

SELECT COUNT(staffNo) AS myCount, SUM(salary) AS mySum
FROM Staff
WHERE position = ‘Manager’;

Restricting the query to Managers is achieved using the WHERE clause. The number of
Managers and the sum of their salaries can be found by applying the COUNT and the
SUM functions respectively to this restricted set. The result table is shown in Table 6.15.

TABLE 6.15 Result table for

Example 6.15.
myCount mySum
2 54000.00

EXAMPLE 6.16 Use of MIN, MAX, AVG
Find the minimum, maximum, and average staff salary.

SELECT MIN(salary) AS myMin, MAX(salary) AS myMax, AVG(salary) AS myAvg
FROM Staff;

In this example, we wish to consider all staff and therefore do not require a WHERE
clause. The required values can be calculated using the MIN, MAX, and AVG functions
based on the salary column. The result table is shown in Table 6.16.

TABLE 6.16 Result table for Example 6.16.
myMin myMax myAvg
9000.00 30000.00 17000.00

6.3.4 Grouping Results (GROUP BY Clause)

The previous summary queries are similar to the totals at the bottom of a report.
They condense all the detailed data in the report into a single summary row of data.
However, it is often useful to have subtotals in reports. We can use the GROUP
BY clause of the SELECT statement to do this. A query that includes the GROUP
BY clause is called a grouped query, because it groups the data from the SELECT
table(s) and produces a single summary row for each group. The columns named
in the GROUP BY clause are called the grouping columns. The ISO standard
requires the SELECT clause and the GROUP BY clause to be closely integrated.
When GROUP BY is used, each item in the SELECT list must be single-valued per
group. In addition, the SELECT clause may contain only:

« column names;

- aggregate functions;

209

210

Chapter 6 SQL: Data Manipulation

+ constants;

+ an expression involving combinations of these elements.

All column names in the SELECT list must appear in the GROUP BY clause unless
the name is used only in an aggregate function. The contrary is not true: there may
be column names in the GROUP BY clause that do not appear in the SELECT list.
When the WHERE clause is used with GROUP BY, the WHERE clause is applied first,
then groups are formed from the remaining rows that satisty the search condition.

The ISO standard considers two nulls to be equal for purposes of the GROUP BY
clause. If two rows have nulls in the same grouping columns and identical values in
all the nonnull grouping columns, they are combined into the same group.

EXAMPLE 6.17 Use of GROUP BY
Find the number of staff working in each branch and the sum of their salaries.

SELECT branchNo, COUNT (staffNo) AS myCount, SUM(salary) AS mySum
FROM Staff

GROUP BY branchNo

ORDER BY branchNo;

It is not necessary to include the column names staffNo and salary in the GROUP BY list,
because they appear only in the SELECT list within aggregate functions. On the other
hand, branchNo is not associated with an aggregate function and so must appear in the
GROUP BY list. The result table is shown in Table 6.17.

TABLE 6.17 Result table for Example 6.17.

branchNo myCount mySum

B0O3 3 54000.00
BOO5 2 39000.00
BOO7 I 9000.00

Conceptually, SQL performs the query as follows:

(1) SQL divides the staff into groups according to their respective branch numbers.
Within each group, all staff have the same branch number. In this example, we get
three groups:

branchNo | staffNo | salary COUNT (staffNo) | SUM(salary)
B003 SG37 12000.00

B003 SG14 18000.00 —— "3 54000.00
B003 SG5 24000.00

BO005 SL21 30000.00 ’ 39000.00
B005 SL41 9000.00

B0O07 SA9 9000.00 } — | 1 9000.00

6.3 Data Manipulation

(2) For each group, SQL computes the number of staff members and calculates the sum
of the values in the salary column to get the total of their salaries. SQL generates a
single summary row in the query result for each group.

(3) Finally, the result is sorted in ascending order of branch number, branchNo.

The SQL standard allows the SELECT list to contain nested queries (see Section 6.3.5).
Therefore, we could also express the previous query as:

SELECT branchNo, (SELECT COUNT (staffNo) AS myCount
FROM Staff s
WHERE s.branchNo = b.branchNo),
(SELECT SUM(salary) AS mySum
FROM Staff s
WHERE s.branchNo = b.branchNo)
FROM Branch b
ORDER BY branchNo;

With this version of the query, however, the two aggregate values are produced for each
branch office in Branch; in some cases possibly with zero values.

Restricting groupings (HAVING clause)

The HAVING clause is designed for use with the GROUP BY clause to restrict the
groups that appear in the final result table. Although similar in syntax, HAVING
and WHERE serve different purposes. The WHERE clause filters individual rows
going into the final result table, whereas HAVING filters groups going into the final
result table. The ISO standard requires that column names used in the HAVING
clause must also appear in the GROUP BY list or be contained within an aggregate
function. In practice, the search condition in the HAVING clause always includes at
least one aggregate function; otherwise the search condition could be moved to the
WHERE clause and applied to individual rows. (Remember that aggregate functions
cannot be used in the WHERE clause.)

The HAVING clause is not a necessary part of SQL—any query expressed using
a HAVING clause can always be rewritten without the HAVING clause.

EXAMPLE 6.18 Use of HAVING

For each branch office with more than one member of staff, find the number of staff working in each
branch and the sum of their salaries.

SELECT branchNo, COUNT (staffNo) AS myCount, SUM(salary) AS mySum
FROM Staff

GROUP BY branchNo

HAVING COUNT (staffNo) > 1

ORDER BY branchNo;

This is similar to the previous example, with the additional restriction that we want
to consider only those groups (that is, branches) with more than one member of staff.
This restriction applies to the groups, so the HAVING clause is used. The result table

is shown in Table 6.18.

211

212

Chapter 6 SQL: Data Manipulation

TABLE 6.18 Result table for Example 6.18.

branchNo myCount mySum
BOO3 3 54000.00
BOO5 2 39000.00

6.3.5 Subqueries

In this section we examine the use of a complete SELECT statement embedded
within another SELECT statement. The results of this inner SELECT statement
(or subselect) are used in the outer statement to help determine the contents of
the final result. A sub-select can be used in the WHERE and HAVING clauses
of an outer SELECT statement, where it is called a subquery or nested query.
Subselects may also appear in INSERT, UPDATE, and DELETE statements (see
Section 6.3.10). There are three types of subquery:

« A scalar subquery returns a single column and a single row, that is, a single value.
In principle, a scalar subquery can be used whenever a single value is needed.
Example 6.19 uses a scalar subquery.

« A row subquery returns multiple columns, but only a single row. A row subquery
can be used whenever a row value constructor is needed, typically in predicates.

* A lable subquery returns one or more columns and multiple rows. A table sub-
query can be used whenever a table is needed, for example, as an operand for
the IN predicate.

EXAMPLE 6.19 Using a subquery with equality

List the staff who work in the branch at ‘163 Main St

SELECT staffNo, fName, IName, position
FROM Staff
WHERE branchNo = (SELECT branchNo
FROM Branch
WHERE street = ‘163 Main St’);

The inner SELECT statement (SELECT branchNo FROM Branch . . .) finds the branch
number that corresponds to the branch with street name ‘163 Main St’ (there will be
only one such branch number, so this is an example of a scalar subquery). Having
obtained this branch number, the outer SELECT statement then retrieves the details
of all staff who work at this branch. In other words, the inner SELECT returns a result
table containing a single value ‘B003’, corresponding to the branch at ‘163 Main St’, and
the outer SELECT becomes:

SELECT staffNo, fName, IName, position
FROM Staff
WHERE branchNo = ‘B003’;

The result table is shown in Table 6.19.

6.3 Data Manipulation

TABLE 6.19 Result table for Example 6.19.

staffNo fName IName position
SG37 Ann Beech Assistant
SGl4 David Ford Supervisor
SG5 Susan Brand Manager

We can think of the subquery as producing a temporary table with results that can
be accessed and used by the outer statement. A subquery can be used immediately
tollowing a relational operator (=, <, >, <=, > =,< >) in a WHERE clause, or a
HAVING clause. The subquery itself is always enclosed in parentheses.

EXAMPLE 6.20 Using a subquery with an aggregate function

List all staff whose salary is greater than the average salary, and show by how much their salary is
greater than the average.

SELECT staffNo, fName, IName, position,

salary — (SELECT AVG(salary) FROM Staff) AS salDiff
FROM Staff
WHERE salary > (SELECT AVG¢(salary) FROM Staff);

First, note that we cannot write ‘WHERE salary > AVG(salary)’, because aggregate func-
tions cannot be used in the WHERE clause. Instead, we use a subquery to find the aver-
age salary, and then use the outer SELECT statement to find those staft with a salary
greater than this average. In other words, the subquery returns the average salary as
£17,000. Note also the use of the scalar subquery in the SELECT list to determine the
difference from the average salary. The outer query is reduced then to:

SELECT staffNo, fName, IName, position, salary — 17000 AS salDiff
FROM Staff
WHERE salary > 17000;

The result table is shown in Table 6.20.

TABLE 6.20 Result table for Example 6.20.

staffNo fName IName position salDiff

SL21 John White Manager 13000.00
SGl14 David Ford Supervisor 1000.00
SG5 Susan Brand Manager 7000.00

The following rules apply to subqueries:

(1) The ORDER BY clause may not be used in a subquery (although it may be used
in the outermost SELECT statement).

213

214

Chapter 6 SQL: Data Manipulation

(2) The subquery SELECT list must consist of a single column name or expression,
except for subqueries that use the keyword EXISTS (see Section 6.3.8).

(3) By default, column names in a subquery refer to the table name in the FROM
clause of the subquery. It is possible to refer to a table in a FROM clause of an
outer query by qualifying the column name (see following).

(4) When a subquery is one of the two operands involved in a comparison, the
subquery must appear on the right-hand side of the comparison. For example,
it would be incorrect to express the previous example as:

SELECT staffNo, fName, IName, position, salary
FROM Staff
WHERE (SELECT AVGg(salary) FROM Staff) < salary;

because the subquery appears on the left-hand side of the comparison with salary.

EXAMPLE 6.21 Nested subqueries: use of IN
List the properties that are handled by staff who work in the branch at ‘163 Main St’.

SELECT propertyNo, street, city, postcode, type, rooms, rent
FROM PropertyForRent
WHERE staffNo IN (SELECT staffNo
FROM Staff
WHERE branchNo = (SELECT branchNo
FROM Branch
WHERE street = ‘163 Main St’));

Working from the innermost query outwards, the first query selects the number of the
branch at ‘163 Main St’. The second query then selects those staff who work at this branch
number. In this case, there may be more than one such row found, and so we cannot use
the equality condition (=) in the outermost query. Instead, we use the IN keyword. The
outermost query then retrieves the details of the properties that are managed by each
member of staff identified in the middle query. The result table is shown in Table 6.21.

TABLE 6.21 Result table for Example 6.21.

propertyNo street city postcode type rooms rent
PGIl6 5Novar Dr Glasgow GI12 9AX Flat 4 450
PG36 2 ManorRd Glasgow G32 40X Flat 3 375
PG2I |8 Dale Rd Glasgow Gl2 House 5 600

6.3.6 ANY and ALL

The keywords ANY and ALL may be used with subqueries that produce a single
column of numbers. If the subquery is preceded by the keyword ALL, the condi-
tion will be true only if it is satisfied by all values produced by the subquery. If
the subquery is preceded by the keyword ANY, the condition will be true if it is
satisfied by any (one or more) values produced by the subquery. If the subquery is

6.3 Data Manipulation

empty, the ALL condition returns true, the ANY condition returns false. The ISO
standard also allows the qualifier SOME to be used in place of ANY.

EXAMPLE 6.22 Use of ANY/SOME
Find all staff whose salary is larger than the salary of at least one member of staff at branch B003.

SELECT staffNo, fName, IName, position, salary
FROM Staff
WHERE salary > SOME (SELECT salary
FROM Staff
WHERE branchNo = ‘B003’);

Although this query can be expressed using a subquery that finds the minimum salary
of the staff at branch B0O03 and then an outer query that finds all staff whose salary is
greater than this number (see Example 6.20), an alternative approach uses the SOME/
ANY keyword. The inner query produces the set {12000, 18000, 24000} and the outer
query selects those staff whose salaries are greater than any of the values in this set (that
is, greater than the minimum value, 12000). This alternative method may seem more
natural than finding the minimum salary in a subquery. In either case, the result table
is shown in Table 6.22.

TABLE 6.22 Result table for Example 6.22.

staffNo fName IName position salary

SL21 John White Manager 30000.00
SGl14 David Ford Supervisor 18000.00
SG5 Susan Brand Manager 24000.00

EXAMPLE 6.23 Use of ALL
Find all staff whose salary is larger than the salary of every member of staff at branch BO03.

SELECT staffNo, fName, IName, position, salary
FROM Staff
WHERE salary > ALL (SELECT salary
FROM Staff
WHERE branchNo = ‘B003’);

This example is very similar to the previous example. Again, we could use a subquery
to find the maximum salary of staff at branch BO03 and then use an outer query to find
all staff whose salary is greater than this number. However, in this example we use the
ALL keyword. The result table is shown in Table 6.23.

TABLE 6.23 Result table for Example 6.23.

staffNo fName IName position salary

SL21 John White Manager 30000.00

215

216

Chapter 6 SQL: Data Manipulation

6.3.7 Multi-table Queries

All the examples we have considered so far have a major limitation: the columns
that are to appear in the result table must all come from a single table. In many
cases, this is insufficient to answer common queries that users will have. To combine
columns from several tables into a result table, we need to use a join operation.
The SQL join operation combines information from two tables by forming pairs of
related rows from the two tables. The row pairs that make up the joined table are
those where the matching columns in each of the two tables have the same value.

If we need to obtain information from more than one table, the choice is between
using a subquery and using a join. If the final result table is to contain columns
from different tables, then we must use a join. To perform a join, we simply include
more than one table name in the FROM clause, using a comma as a separator, and
typically including a WHERE clause to specify the join column(s). It is also possible
to use an alias for a table named in the FROM clause. In this case, the alias is sepa-
rated from the table name with a space. An alias can be used to qualify a column
name whenever there is ambiguity regarding the source of the column name. It can
also be used as a shorthand notation for the table name. If an alias is provided, it
can be used anywhere in place of the table name.

EXAMPLE 6.24 Simple join
List the names of all clients who have viewed a property, along with any comments supplied.

SELECT c.clientNo, fName, IName, propertyNo, comment
FROM Client c, Viewing v
WHERE c.clientNo = v.clientNo;

We want to display the details from both the Client table and the Viewing table, and so
we have to use a join. The SELECT clause lists the columns to be displayed. Note that
it is necessary to qualify the client number, clientNo, in the SELECT list: clientNo could
come from either table, and we have to indicate which one. (We could also have chosen
the clientNo column from the Viewing table.) The qualification is achieved by prefixing
the column name with the appropriate table name (or its alias). In this case, we have
used ¢ as the alias for the Client table.

To obtain the required rows, we include those rows from both tables that have identi-
cal values in the clientNo columns, using the search condition (c.clientNo = v.clientNo). We
call these two columns the matching columns for the two tables. This is equivalent to
the relational algebra Equijoin operation discussed in Section 5.1.3. The result table is
shown in Table 6.24.

TABLE 6.24 Result table for Example 6.24.

clientNo fName IName propertyNo comment
CR56 Aline Stewart PG36

CR56 Aline Stewart PAI4 too small
CR56 Aline Stewart PG4

CR62 Mary Tregear PAL4 no dining room

CR76 John Kay PG4 too remote

6.3 Data Manipulation

The most common multi-table queries involve two tables that have a one-to-many
(1:*) (or a parent/child) relationship (see Section 12.6.2). The previous query
involving clients and viewings is an example of such a query. Each viewing (child)
has an associated client (parent), and each client (parent) can have many associated
viewings (children). The pairs of rows that generate the query results are parent/
child row combinations. In Section 4.2.5 we described how primary key and foreign
keys create the parent/child relationship in a relational database: the table contain-
ing the primary key is the parent table and the table containing the foreign key is
the child table. To use the parent/child relationship in an SQL query, we specify a
search condition that compares the primary key and the foreign key. In Example
6.24, we compared the primary key in the Client table, c.clientNo, with the foreign key
in the Viewing table, v.clientNo.
The SQL standard provides the following alternative ways to specify this join:

FROM Client ¢ JOIN Viewing v ON c.clientNo = v.clientNo
FROM Client JOIN Viewing USING clientNo
FROM Client NATURAL JOIN Viewing

In each case, the FROM clause replaces the original FROM and WHERE clauses.
However, the first alternative produces a table with two identical clientNo columns;
the remaining two produce a table with a single clientNo column.

EXAMPLE 6.25 Sorting a join

For each branch office, list the staff numbers and names of staff who manage properties and the
properties that they manage.

SELECT s.branchNo, s.staffNo, fName, IName, propertyNo
FROM Staff s, PropertyForRent p

WHERE s.staffNo = p.staffNo

ORDER BY s.branchNo, s.staffNo, propertyNo;

In this example, we need to join the Staff and PropertyForRent tables, based on the
primary key/foreign key attribute (staffNo). To make the results more readable, we
have ordered the output using the branch number as the major sort key and the
staff number and property number as the minor keys. The result table is shown in
Table 6.25.

TABLE 6.25 Result table for Example 6.25.

branchNo staffNo fName IName propertyNo
BOO3 SGl14 David Ford PGl6
BOO3 SG37 Ann Beech PG2I
BOO3 SG37 Ann Beech PG36
BOOS SL4| Julie Lee PL94

B0O7 SA9 Mary Howe PAl4

217

218

Chapter 6 SQL: Data Manipulation

EXAMPLE 6.26 Three-table join

For each branch, list the staff numbers and names of staff who manage properties, including the city in
which the branch is located and the properties that the staff manage.

SELECT b.branchNo, b.city, s.staffNo, fName, IName, propertyNo
FROM Branch b, Staff s, PropertyForRent p

WHERE b.branchNo = s.branchNo AND s.staffNo = p.staffNo
ORDER BY b.branchNo, s.staffNo, propertyNo;

The result table requires columns from three tables: Branch (branchNo and city), Staff
(staffNo, fName and IName), and PropertyForRent (propertyNo), so a join must be used. The
Branch and Staff details are joined using the condition (b.branchNo = s.branchNo) to link
each branch to the staff who work there. The Staff and PropertyForRent details are joined
using the condition (s.staffNo = p.staffNo) to link staff to the properties they manage. The
result table is shown in Table 6.26.

TABLE 6.26 Result table for Example 6.26.

branchNo city staffNo fName IName propertyNo
BOO3 Glasgow SGl14 David Ford PGIl6
BOO3 Glasgow SG37 Ann Beech PG2I
BOO3 Glasgow SG37 Ann Beech PG36
BOO5 London SL41 Julie Lee PL94
BOO7 Aberdeen SA9 Mary Howe PAI4

Note again that the SQL standard provides alternative formulations for the FROM
and WHERE clauses, for example:

FROM (Branch b JOIN Staff s USING branchNo) AS bs
JOIN PropertyForRent p USING staffNo

EXAMPLE 6.27 Multiple grouping columns

Find the number of properties handled by each staff member, along with the branch number of the
member of staff.

SELECT s.branchNo, s.staffNo, COUNT(*) AS myCount
FROM Staff s, PropertyForRent p

WHERE s.staffNo = p.staffNo

GROUP BY s.branchNo, s.staffNo

ORDER BY s.branchNo, s.staffNo;

To list the required numbers, we first need to find out which staff actually manage
properties. This can be found by joining the Staff and PropertyForRent tables on the
staffNo column, using the FROM/WHERE clauses. Next, we need to form groups consist-
ing of the branch number and staff number, using the GROUP BY clause. Finally, we

sort the output using the ORDER BY clause. The result table is shown in Table 6.27(a).

6.3 Data Manipulation 219

TABLE 6.27(a) Result table for Example 6.27.
branchNo staffNo myCount
B0O3 SGl14 I
B0O3 SG37 2
B0O5 SL41 I
BOO7 SA9 I

Computing a join

A join is a subset of a more general combination of two tables known as the
Cartesian product (see Section 5.1.2). The Cartesian product of two tables is
another table consisting of all possible pairs of rows from the two tables. The
columns of the product table are all the columns of the first table followed by all
the columns of the second table. If we specify a two-table query without a WHERE
clause, SQL produces the Cartesian product of the two tables as the query result.
In fact, the ISO standard provides a special form of the SELECT statement for the
Cartesian product:

SELECT [DISTINCT | ALL] {* | columnList}
FROM TableName1 CROSS JOIN TableName2

Consider again Example 6.24, where we joined the Client and Viewing tables using
the matching column, clientNo. Using the data from Figure 4.3, the Cartesian prod-
uct of these two tables would contain 20 rows (4 clients * 5 viewings = 20 rows). It
is equivalent to the query used in Example 6.24 without the WHERE clause.

Conceptually, the procedure for generating the results of a SELECT with a join
is as follows:

(1) Form the Cartesian product of the tables named in the FROM clause.

(2) If there is a WHERE clause, apply the search condition to each row of the
product table, retaining those rows that satisfy the condition. In terms of the
relational algebra, this operation yields a restriction of the Cartesian product.

(3) For each remaining row, determine the value of each item in the SELECT list
to produce a single row in the result table.

(4) If SELECT DISTINCT has been specified, eliminate any duplicate rows from
the result table. In the relational algebra, Steps 3 and 4 are equivalent to a
projection of the restriction over the columns mentioned in the SELECT list.

(5) If there is an ORDER BY clause, sort the result table as required.

We will discuss query processing in more detail in Chapter 23.

Outer joins

The join operation combines data from two tables by forming pairs of related rows
where the matching columns in each table have the same value. If one row of a

220 Chapter 6 SQL: Data Manipulation

table is unmatched, the row is omitted from the result table. This has been the case
for the joins we examined earlier. The ISO standard provides another set of join
operators called outer joins (see Section 5.1.3). The Outer join retains rows that
do not satisfy the join condition. To understand the Outer join operators, consider
the following two simplified Branch and PropertyForRent tables, which we refer to as
Branch1 and PropertyForRent1, respectively:

Branchl| PropertyForRent |

branchNo bCity propertyNo pCity
B0O3 Glasgow PAL4 Aberdeen
B0OO4 Bristol PL94 London
B002 London PG4 Glasgow

The (Inner) join of these two tables:

SELECT b.*, p.*
FROM Branch1 b, PropertyForRent1 p
WHERE b.bCity = p.pCity;

produces the result table shown in Table 6.27(b).

TABLE 6.27(b) Result table for inner join of the Branchl
and PropertyForRent| tables.

branchNo bCity propertyNo pCity
BOO3 Glasgow PG4 Glasgow
B002 London PL94 London

The result table has two rows where the cities are the same. In particular, note
that there is no row corresponding to the branch office in Bristol and there is
no row corresponding to the property in Aberdeen. If we want to include the
unmatched rows in the result table, we can use an Outer join. There are three types
of Outer join: Left, Right, and Full Outer joins. We illustrate their functionality in
the following examples.

EXAMPLE 6.28 Left Outer join
List all branch offices and any properties that are in the same city.

The Left Outer join of these two tables:

SELECT b.*, p.*
FROM Branch1 b LEFT JOIN PropertyForRent1 p ON b.bCity = p.pCity;

6.3 Data Manipulation

produces the result table shown in Table 6.28. In this example the Left Outer join
includes not only those rows that have the same city, but also those rows of the first (left)
table that are unmatched with rows from the second (right) table. The columns from the
second table are filled with NULLs.

TABLE 6.28 Result table for Example 6.28.

branchNo bCity propertyNo pCity
BOO3 Glasgow PG4 Glasgow
B0OO4 Bristol NULL NULL
BOO2 London PL94 London

EXAMPLE 6.29 Right Outer join

List all properties and any branch offices that are in the same city.

The Right Outer join of these two tables:

SELECT b.*, p.*
FROM Branch1 b RIGHT JOIN PropertyForRent1 p ON b.bCity = p.pCity;

produces the result table shown in Table 6.29. In this example, the Right Outer join
includes not only those rows that have the same city, but also those rows of the second
(right) table that are unmatched with rows from the first (left) table. The columns from
the first table are filled with NULLs.

TABLE 6.29 Result table for Example 6.29.

branchNo bCity propertyNo pCity
NULL NULL PAI4 Aberdeen
BOO3 Glasgow PG4 Glasgow
B002 London PL94 London

EXAMPLE 6.30 Full Outer join

List the branch offices and properties that are in the same city along with any unmatched branches or
properties.

The Full Outer join of these two tables:

SELECT b.*, p.*
FROM Branch1 b FULL JOIN PropertyForRent1 p ON b.bCity = p.pCity;

221

222

Chapter 6 SQL: Data Manipulation

produces the result table shown in Table 6.30. In this case, the Full Outer join includes
not only those rows that have the same city, but also those rows that are unmatched in
both tables. The unmatched columns are filled with NULL:s.

TABLE 6.30 Result table for Example 6.30.

branchNo bCity propertyNo pCity
NULL NULL PA 14 Aberdeen
BOO3 Glasgow PG4 Glasgow
BOO4 Bristol NULL NULL
B002 London PL94 London

6.3.8 EXISTS and NOT EXISTS

The keywords EXISTS and NOT EXISTS are designed for use only with subquer-
ies. They produce a simple true/false result. EXISTS is true if and only if there
exists at least one row in the result table returned by the subquery; it is false if the
subquery returns an empty result table. NOT EXISTS is the opposite of EXISTS.
Because EXISTS and NOT EXISTS check only for the existence or nonexistence of
rows in the subquery result table, the subquery can contain any number of columns.
For simplicity, it is common for subqueries following one of these keywords to be
of the form:

(SELECT * FROM .. .)

EXAMPLE 6.31 Query using EXISTS

Find all staff who work in a London branch office.

SELECT staffNo, fName, IName, position
FROM Staff s
WHERE EXISTS (SELECT *
FROM Branch b
WHERE s.branchNo = b.branchNo AND city = ‘London’);

This query could be rephrased as ‘Find all staff such that there exists a Branch row con-
taining his/her branch number, branchNo, and the branch city equal to London’. The test
for inclusion is the existence of such a row. If it exists, the subquery evaluates to true.
The result table is shown in Table 6.31.

TABLE 6.31 Result table for Example 6.31.
staffNo fName IName position

SL2| John White Manager

SL41 Julie Lee Assistant

6.3 Data Manipulation 223

Note that the first part of the search condition s.branchNo = b.branchNo is necessary
to ensure that we consider the correct branch row for each member of staff. If we omit-
ted this part of the query, we would get all staff rows listed out because the subquery
(SELECT * FROM Branch WHERE city = ‘London’) would always be true and the query
would be reduced to:

SELECT staffNo, fName, IName, position FROM Staff WHERE true;
which is equivalent to:

SELECT staffNo, fName, IName, position FROM Staff;
We could also have written this query using the join construct:

SELECT staffNo, fName, IName, position
FROM Staff s, Branch b
WHERE s.branFchNo = b.branchNo AND city = ‘London’;

6.3.9 Combining Result Tables (UNION,
INTERSECT, EXCEPT)

In SQL, we can use the normal set operations of Union, Intersection, and Difference to
combine the results of two or more queries into a single result table:

+ The Union of two tables, A and B, is a table containing all rows that are in either
the first table A or the second table B or both.

+ The Intersection of two tables, A and B, is a table containing all rows that are
common to both tables A and B.

+ The Difference of two tables, A and B, is a table containing all rows that are in
table A but are not in table B.

The set operations are illustrated in Figure 6.1. There are restrictions on the tables
that can be combined using the set operations, the most important one being that
the two tables have to be union-compatible; that is, they have the same structure.
This implies that the two tables must contain the same number of columns, and that
their corresponding columns have the same data types and lengths. It is the user’s
responsibility to ensure that data values in corresponding columns come from the
same domain. For example, it would not be sensible to combine a column containing
the age of staff with the number of rooms in a property, even though both columns
may have the same data type: for example, SMALLINT.

RUS RNS R-S

(a) Union (b) Intersection (c) Difference

Figure 6.1
Union,
Intersection, and
Difference set
operations.

224 Chapter 6 SQL: Data Manipulation

TABLE 6.32
Result table for
Example 6.32.
city
London
Glasgow
Aberdeen

Bristol

TABLE 6.33
Result table for
Example 6.33.

city
Aberdeen

Glasgow

London

The three set operators in the ISO standard are called UNION, INTERSECT,
and EXCEPT. The format of the set operator clause in each case is:

operator [ALL] [CORRESPONDING [BY {column1 [, .. .]}|]

If CORRESPONDING BY is specified, then the set operation is performed on the
named column(s); if CORRESPONDING is specified but not the BY clause, the set
operation is performed on the columns that are common to both tables. If ALL is
specified, the result can include duplicate rows. Some dialects of SQL do not sup-
port INTERSECT and EXCEPT; others use MINUS in place of EXCEPT.

EXAMPLE 6.32 Use of UNION

Construct a list of all cities where there is either a branch office or a property.

(SELECT city or (SELECT *

FROM Branch FROM Branch

WHERE city IS NOT NULL) WHERE city IS NOT NULL)
UNION UNION CORRESPONDING BY city
(SELECT city (SELECT *

FROM PropertyForRent FROM PropertyForRent

WHERE city IS NOT NULL); WHERE city IS NOT NULL);

This query is executed by producing a result table from the first query and a result table
from the second query, and then merging both tables into a single result table consisting
of all the rows from both result tables with the duplicate rows removed. The final result
table is shown in Table 6.32.

EXAMPLE 6.33 Use of INTERSECT

Construct a list of all cities where there is both a branch office and a property.

(SELECT city or (SELECT *

FROM Branch) FROM Branch)

INTERSECT INTERSECT CORRESPONDING BY city
(SELECT city (SELECT *

FROM PropertyForRent); FROM PropertyForRent);

This query is executed by producing a result table from the first query and a result table

from the second query, and then creating a single result table consisting of those rows

that are common to both result tables. The final result table is shown in Table 6.33.
We could rewrite this query without the INTERSECT operator, for example:

SELECT DISTINCT b.city or SELECT DISTINCT city
FROM Branch b, PropertyForRent p FROM Branch b
WHERE b.city = p.city; WHERE EXISTS (SELECT *

FROM PropertyForRent p
WHERE b.city = p.city);

The ability to write a query in several equivalent forms illustrates one of the disadvan-
tages of the SQL language.

6.3 Data Manipulation 225

EXAMPLE 6.34 Use of EXCEPT

Construct a list of all cities where there is a branch office but no properties.

(SELECT city or (SELECT *

FROM Branch) FROM Branch)

EXCEPT EXCEPT CORRESPONDING BY city
(SELECT city (SELECT *

FROM PropertyForRent); FROM PropertyForRent);

This query is executed by producing a result table from the first query and a result table
from the second query, and then creating a single result table consisting of those rows
that appear in the first result table but not in the second one. The final result table is
shown in Table 6.34.

We could rewrite this query without the EXCEPT operator, for example:

SELECT DISTINCT city or SELECT DISTINCT city

FROM Branch FROM Branch b

WHERE city NOT IN (SELECT city WHERE NOT EXISTS
FROM PropertyForRent); (SELECT *

FROM PropertyForRent p
WHERE b.city = p.city);

6.3.10 Database Updates

SQL is a complete data manipulation language that can be used for modifying the
data in the database as well as querying the database. The commands for modify-
ing the database are not as complex as the SELECT statement. In this section, we
describe the three SQL statements that are available to modify the contents of the
tables in the database:

« INSERT - adds new rows of data to a table
« UPDATE — modifies existing data in a table
« DELETE - removes rows of data from a table

Adding data to the database (INSERT)

There are two forms of the INSERT statement. The first allows a single row to be
inserted into a named table and has the following format:

INSERT INTO TableName [(columnList)]
VALUES (dataValueList)

TableName may be either a base table or an updatable view (see Section 7.4), and
columnList represents a list of one or more column names separated by commas. The
columnList is optional; if omitted, SQL assumes a list of all columns in their origi-
nal CREATE TABLE order. If specified, then any columns that are omitted from
the list must have been declared as NULL columns when the table was created,

TABLE 6.34
Result table for
Example 6.34.

city

Bristol

226

Chapter 6 SQL: Data Manipulation

unless the DEFAULT option was used when creating the column (see Section 7.3.2).
The dataValueList must match the columnList as follows:

« The number of items in each list must be the same.

+ There must be a direct correspondence in the position of items in the two lists, so
that the first item in dataValueList applies to the first item in columnList, the second
item in dataValueList applies to the second item in columnList, and so on.

« The data type of each item in dataValueList must be compatible with the data type
of the corresponding column.

EXAMPLE 6.35 INSERT...VALUES
Insert a new row into the Staff table supplying data for all columns.

INSERT INTO Staff
VALUES ('SG16’, ‘Alan’, ‘Brown’, ‘Assistant’, ‘M’, DATE ‘1957-05-25, 8300, ‘B003’);

As we are inserting data into each column in the order the table was created, there is no
need to specify a column list. Note that character literals such as ‘Alan’ must be enclosed
in single quotes.

EXAMPLE 6.36 INSERT using defaults

Insert a new row into the Staff table supplying data for all mandatory columns: staffNo, fName,
IName, position, salary, and branchNo.

INSERT INTO Staff (staffNo, fName, IName, position, salary, branchNo)
VALUES (‘SG44’, ‘Anne’, ‘Jones’, ‘Assistant’, 8100, ‘B003’);

As we are inserting data into only certain columns, we must specify the names of the col-
umns that we are inserting data into. The order for the column names is not significant,
but it is more normal to specify them in the order they appear in the table. We could
also express the INSERT statement as:

INSERT INTO Staff
VALUES (‘SG44’, ‘Anne’, ‘Jones’, ‘Assistant’, NULL, NULL, 8100, ‘B003’);

In this case, we have explicitly specified that the columns sex and DOB should be set to
NULL.

The second form of the INSERT statement allows multiple rows to be copied
from one or more tables to another, and has the following format:

INSERT INTO TableName [(columnList)]
SELECT . ..

TableName and columnList are defined as before when inserting a single row. The
SELECT clause can be any valid SELECT statement. The rows inserted into the
named table are identical to the result table produced by the subselect. The same
restrictions that apply to the first form of the INSERT statement also apply here.

6.3 Data Manipulation

EXAMPLE 6.37 INSERT...SELECT

Assume that there is a table StaffPropCount that contains the names of staff and the num-
ber of properties they manage:

StaffPropCount(staffNo, fName, IName, propCount)

Populate the StaffPropCount table using details from the Staff and PropertyForRent tables.

INSERT INTO StaffPropCount

(SELECT s.staffNo, fName, IName, COUNT(*)

FROM Staff s, PropertyForRent p

WHERE s.staffNo = p.staffNo

GROUP BY s.staffNo, fName, IName)

UNION

(SELECT staffNo, fName, IName, 0

FROM Staff s

WHERE NOT EXISTS (SELECT *
FROM PropertyForRent p
WHERE p.staffNo = s.staffNo));

This example is complex, because we want to count the number of properties that staft
manage. If we omit the second part of the UNION, then we get a list of only those staff
who currently manage at least one property; in other words, we exclude those staff who
currently do not manage any properties. Therefore, to include the staff who do not man-
age any properties, we need to use the UNION statement and include a second SELECT
statement to add in such staff, using a 0 value for the count attribute. The StaffPropCount
table will now be as shown in Table 6.35.

Note that some dialects of SQL may not allow the use of the UNION operator within
a subselect for an INSERT.

TABLE 6.35 Result table for Example 6.37.

staffNo fName IName propCount
SGl14 David Ford |
SL21 John White 0
SG37 Ann Beech 2
SA9 Mary Howe I
SG5 Susan Brand 0
SL41 Julie Lee |

Modifying data in the database (UPDATE)
The UPDATE statement allows the contents of existing rows in a named table to be

changed. The format of the command is:

UPDATE TableName

SET columnName1 = dataValuel [, columnName2 = dataValue?2 . . .]
[WHERE searchCondition]

227

228

Chapter 6 SQL: Data Manipulation

TableName can be the name of a base table or an updatable view (see Section 7.4).
The SET clause specifies the names of one or more columns that are to be updated.
The WHERE clause is optional; if omitted, the named columns are updated for all
rows in the table. If a WHERE clause is specified, only those rows that satisfy the
searchCondition are updated. The new datalalue(s) must be compatible with the data
type(s) for the corresponding columnc(s).

EXAMPLE 6.38 UPDATE all rows

Give all staff a 3% pay increase.

UPDATE Staff
SET salary = salary*1.03;

As the update applies to all rows in the Staff table, the WHERE clause is omitted.

EXAMPLE 6.39 UPDATE specific rows

Give all Managers a 5% pay increase.

UPDATE Staff

SET salary = salary*1.05

WHERE position = ‘Manager’;
The WHERE clause finds the rows that contain data for Managers and the update salary
= salary*1.05 is applied only to these particular rows.

EXAMPLE 6.40 UPDATE multiple columns
Promote David Ford (staffNo = ‘SG14’) to Manager and change his salary to £18,000.
UPDATE Staff

SET position = ‘Manager’, salary = 18000
WHERE staffNo = ‘SG14’;

Deleting data from the database (DELETE)

The DELETE statement allows rows to be deleted from a named table. The format
of the command is:

DELETE FROM TableName
[WHERE searchCondition]

As with the INSERT and UPDATE statements, TableName can be the name of a
base table or an updatable view (see Section 7.4). The searchCondition is optional; if
omitted, all rows are deleted from the table. This does not delete the table itself—
to delete the table contents and the table definition, the DROP TABLE statement
must be used instead (see Section 7.3.3). If a searchCondition is specified, only those
rows that satisty the condition are deleted.

EXAMPLE 6.41 DELETE specific rows

Delete all viewings that relate to property PG4.

The WHERE clause finds the rows for property PG4 and the delete operation is applied
only to these particular rows.

EXAMPLE 6.42 DELETE all rows

Delete all rows from the Viewing table.

No WHERE clause has been specified, so the delete operation applies to all rows in the
table. This query removes all rows from the table, leaving only the table definition, so
that we are still able to insert data into the table at a later stage.

Chapter Summary 229

DELETE FROM Viewing
WHERE propertyNo = ‘PG4’

DELETE FROM Viewing;

Chapter Summary

SQL is a nonprocedural language consisting of standard English words such as SELECT, INSERT, and DELETE that
can be used by professionals and non-professionals alike. It is both the formal and de facto standard language for
defining and manipulating relational databases.

The SELECT statement is the most important statement in the language and is used to express a query. It
combines the three fundamental relational algebra operations of Selection, Projection, and Join. Every SELECT
statement produces a query result table consisting of one or more columns and zero or more rows.

The SELECT clause identifies the columns and/or calculated data to appear in the result table. All column names
that appear in the SELECT clause must have their corresponding tables or views listed in the FROM clause.

The WHERE clause selects rows to be included in the result table by applying a search condition to the rows
of the named table(s). The ORDER BY clause allows the result table to be sorted on the values in one or more
columns. Each column can be sorted in ascending or descending order. If specified, the ORDER BY clause must
be the last clause in the SELECT statement.

SQL supports five aggregate functions (COUNT, SUM, AVG, MIN, and MAX) that take an entire column as an
argument and compute a single value as the result. It is illegal to mix aggregate functions with column names in a
SELECT clause, unless the GROUP BY clause is used.

The GROUP BY clause allows summary information to be included in the result table. Rows that have the same
value for one or more columns can be grouped together and treated as a unit for using the aggregate functions.
In this case, the aggregate functions take each group as an argument and compute a single value for each group

as the result. The HAVING clause acts as a WHERE clause for groups, restricting the groups that appear in the

final result table. However, unlike the WHERE clause, the HAVING clause can include aggregate functions.

A subselect is a complete SELECT statement embedded in another query. A subselect may appear within the
WHERE or HAVING clauses of an outer SELECT statement, where it is called a subquery or nested query.
Conceptually, a subquery produces a temporary table whose contents can be accessed by the outer query. A
subquery can be embedded in another subquery.

230 Chapter 6 SQL: Data Manipulation

 There are three types of subquery: scalar, row, and table. A scalar subquery retums a single column and a single
row, that is, a single value. In principle, a scalar subquery can be used whenever a single value is needed. A row
subquery returns muttiple columns, but only a single row. A row subquery can be used whenever a row value con-
structor is needed, typically in predicates. A table subquery retumns one or more columns and multiple rows. A table
subguery can be used whenever a table is needed; for example, as an operand for the IN predicate.

+ If the columns of the result table come from more than one table, a join must be used, by specifying more than
one table in the FROM clause and typically including a WHERE clause to specify the join column(s). The ISO
standard allows Outer joins to be defined. It also allows the set operations of Union, Intersection, and Difference
to be used with the UNION, INTERSECT, and EXCEPT commands.

+ As well as SELECT, the SQL DML includes the INSERT statement to insert a single row of data into a
named table or to insert an arbitrary number of rows from one or more other tables using a subselect; the
UPDATE statement to update one or more values in a specified column or columns of a named table; the
DELETE statement to delete one or more rows from a named table.

Review Questions

6.1 Briefly describe the four basic SOL DML statements and explain their use.
6.2 Explain the importance and application of the WHERE clause in the UPDATE and DELETE statements.
6.3 Explain the function of each of the clauses in the SELECT statement. What restrictions are imposed on these clauses?

6.4 What restrictions apply to the use of the aggregate functions within the SELECT statement! How do nulls affect
the aggregate functions?

6.5 How can results from two SQL queries be combined? Differentiate how the INTERSECT and EXCEPT commands work.

6.6 Differentiate between the three types of subqueries. Why is it important to understand the nature of subquery
result before you write an SQL statement?

Exercises

For Exercises 6.7—6.28, use the Hotel schema defined at the start of the Exercises at the end of Chapter 4.
Simple queries

6.7 List full details of all hotels.

6.8 List full details of all hotels in London.

6.9 List the names and addresses of all guests living in London, alphabetically ordered by name.
6.10 List all double or family rooms with a price below £40.00 per night, in ascending order of price.

6.11 List the bookings for which no dateTo has been specified.

Aggregate functions

6.12 How many hotels are there?
6.13 What is the average price of a room?
6.14 What is the total revenue per night from all double rooms?

6.15 How many different guests have made bookings for August?

Exercises 231

Subqueries and joins

6.16 List the price and type of all rooms at the Grosvenor Hotel.
6.17 List all guests currently staying at the Grosvenor Hotel.

6.18 List the details of all rooms at the Grosvenor Hotel, including the name of the guest staying in the room, if the
room is occupied.

6.19 What is the total income from bookings for the Grosvenor Hotel today?
6.20 List the rooms that are currently unoccupied at the Grosvenor Hotel.

6.21 What is the lost income from unoccupied rooms at the Grosvenor Hotel?
Grouping

6.22 List the number of rooms in each hotel.

6.23 List the number of rooms in each hotel in London.

6.24 What is the average number of bookings for each hotel in August?

6.25 What is the most commonly booked room type for each hotel in London?

6.26 What is the lost income from unoccupied rooms at each hotel today?

Populating tables

6.27 Insert rows into each of these tables.

6.28 Update the price of all rooms by 5%.

General

6.29 Investigate the SQL dialect on any DBMS that you are currently using. Determine the system’s compliance with
the DML statements of the ISO standard. Investigate the functionality of any extensions that the DBMS supports.
Are there any functions not supported?

6.30 Demonstrate that queries written using the UNION operator can be rewritten using the OR operator to produce
the same result.

6.31 Apply the syntax for inserting data into a table.

Case Study 2

For Exercises 6.32—6.40, use the Projects schema defined in the Exercises at the end of Chapter 5.

6.32 List all employees from BRICS countries in alphabetical order of surname.

6.33 List all the details of employees born between |980-90.

6.34 List all managers who are female in alphabetical order of surname, and then first name.
6.35 Remove all projects that are managed by the planning department.

6.36 Assume the planning department is going to be merged with the IT department. Update employee records to
reflect the proposed change.

6.37 Using the UNION command, list all projects that are managed by the IT and the HR department.

6.38 Produce a report of the total hours worked by each female employee, arranged by department number and
alphabetically by employee surname within each department.

6.39 Remove all project from the database which had no employees worked..

6.40 List the total number of employees in each department for those departments with more than |0 employees.
Create an appropriate heading for the columns of the results table.

232 Chapter 6 SQL: Data Manipulation

Case Study 3

For Exercises 6.41-6.54, use the Library schema defined in the Exercises at the end of Chapter 5.

6.41 List all book titles.

6.42 List all borrower details.

6.43 List all books titles published between 2010 and 2014.

6.44 Remove all books published before 1950 from the database.

6.45 List all book titles that have never been borrowed by any borrower.

6.46 List all book titles that contain the word ‘database’ and are available for loan.

6.47 List the names of borrowers with overdue books.

6.48 How many copies of each book title are there?

6.49 How many copies of ISBN “0-321-52306-7" are currently available?

6.50 How many times has the book title with ISBN “0-321-52306-7" been borrowed?
6.51 Produce a report of book titles that have been borrowed by “Peter Bloomfield.”
6.52 For each book title with more than three copies, list the names of library members who have borrowed them.
6.53 Produce a report with the details of borrowers who currently have books overdue.

6.54 Produce a report detailing how many times each book title has been borrowed.

CHAPTER

SQL: Data Definition

Chapter Objectives

In this chapter you will learn:

The data types supported by the SOL standard.

The purpose of the integrity enhancement feature of SQL.
How to define integrity constraints using SOL, including:

— required data;

— domain constraints;

— entity integrity;

— referential integrity;

— general constraints.

How to use the integrity enhancement feature in the CREATE and ALTER TABLE

statements.

The purpose of views.

How to create and delete views using SQL.
How the DBMS performs operations on views.
Under what conditions views are updatable.
The advantages and disadvantages of views.

How the ISO transaction model works.

How to use the GRANT and REVOKE statements as a level of security.

In the previous chapter we discussed in some detail SQL and, in particular, the SQL
data manipulation facilities. In this chapter we continue our presentation of SQL

and examine the main SQL data definition facilities.

233

234

Chapter 7 SQL: Data Definition

Structure of this Chapter In Section 7.1 we examine the ISO SQL
data types. The 1989 ISO standard introduced an Integrity Enhancement
Feature (IEF), which provides facilities for defining referential integrity and
other constraints (ISO, 1989). Prior to this standard, it was the responsibility
of each application program to ensure compliance with these constraints. The
provision of an IEF greatly enhances the functionality of SQL and allows
constraint checking to be centralized and standardized. We consider the IEF
in Section 7.2 and the main SQL data definition facilities in Section 7.3.

In Section 7.4 we show how views can be created using SQL, and how the
DBMS converts operations on views into equivalent operations on the base
tables. We also discuss the restrictions that the ISO SQL standard places on
views in order for them to be updatable. In Section 7.5, we briefly describe the
ISO SQL transaction model.

Views provide a certain degree of database security. SQL also provides a
separate access control subsystem, containing facilities to allow users to share
database objects or, alternatively, to restrict access to database objects. We
discuss the access control subsystem in Section 7.6.

In Chapter 9 we examine in some detail the features that have recently been
added to the SQL specification to support object-oriented data management. In
Appendix I we discuss how SQL can be embedded in high-level programming lan-
guages to access constructs that until recently were not available in SQL. As in the
previous chapter, we present the features of SQL using examples drawn from the
DreamHome case study. We use the same notation for specifying the format of SQL
statements as defined in Section 6.2.

7.1 The ISO SQL Data Types

-

In this section we introduce the data types defined in the SQL standard. We start
by defining what constitutes a valid identifier in SQL.

7.1.1 SQL Identifiers

SQL identifiers are used to identify objects in the database, such as table names, view
names, and columns. The characters that can be used in a user-defined SQL identi-
fier must appear in a character set. The ISO standard provides a default character
set, which consists of the uppercase letters A . . . Z, the lowercase letters a . . . z, the
digits 0 . . . 9, and the underscore (_) character. It is also possible to specify an alter-
native character set. The following restrictions are imposed on an identifier:

an identifier can be no longer than 128 characters (most dialects have a much
lower limit than this);

an identifier must start with a letter;

an identifier cannot contain spaces.

7.1 The ISO SQL Data Types

TABLE 7.1 ISO SQL data types.

DATA TYPE DECLARATIONS

boolean BOOLEAN

character CHAR VARCHAR

bitt BIT BIT VARYING

exact numeric NUMERIC DECIMAL INTEGER SMALLINT
approximate numeric ~ FLOAT REAL DOUBLE PRECISION

datetime DATE TIME TIMESTAMP

interval INTERVAL

large objects CHARACTER LARGE OBJECT BINARY LARGE OBJECT

BIT and BIT VARYING have been removed from the SQL:2003 standard.

7.1.2 SQL Scalar Data Types

Table 7.1 shows the SQL scalar data types defined in the ISO standard. Sometimes,
for manipulation and conversion purposes, the data types character and bit are col-
lectively referred to as string data types, and exact numeric and approximate numeric
are referred to as numeric data types, as they share similar properties. The SQL
standard now also defines both character large objects and binary large objects,
although we defer discussion of these data types until Chapter 9.

Boolean data

Boolean data consists of the distinct truth values TRUE and FALSE. Unless pro-
hibited by a NOT NULL constraint, boolean data also supports the UNKNOWN
truth value as the NULL value. All boolean data type values and SQL truth values
are mutually comparable and assignable. The value TRUE is greater than the
value FALSE, and any comparison involving the NULL value or an UNKNOWN
truth value returns an UNKNOWN result.

Character data

Character data consists of a sequence of characters from an implementation-
defined character set, that is, it is defined by the vendor of the particular SQL
dialect. Thus, the exact characters that can appear as data values in a character
type column will vary. ASCII and EBCDIC are two sets in common use today. The
format for specifying a character data type is:

CHARACTER [VARYING] [length]
CHARACTER can be abbreviated to CHAR and
CHARACTER VARYING to VARCHAR.

When a character string column is defined, a length can be specified to indicate
the maximum number of characters that the column can hold (default length is 1).
A character string may be defined as having a fixed or varying length. If the string

235

BIGINT

236

Chapter 7 SQL: Data Definition

is defined to be a fixed length and we enter a string with fewer characters than this
length, the string is padded with blanks on the right to make up the required size.
If the string is defined to be of a varying length and we enter a string with fewer
characters than this length, only those characters entered are stored, thereby using
less space. For example, the branch number column branchNo of the Branch table,
which has a fixed length of four characters, is declared as:

branchNo CHAR(4)

The column address of the PrivateOwner table, which has a variable number of char-
acters up to a maximum of 30, is declared as:

address VARCHAR(30)

Bit data

The bit data type is used to define bit strings, that is, a sequence of binary digits
(bits), each having either the value 0 or 1. The format for specifying the bit data
type is similar to that of the character data type:

BIT [VARYING] [length]

For example, to hold the fixed length binary string "0011", we declare a column
bitString, as:

bitString BIT(4)

Exact Numeric Data

The exact numeric data type is used to define numbers with an exact representa-
tion. The number consists of digits, an optional decimal point, and an optional
sign. An exact numeric data type consists of a precision and a scale. The precision
gives the total number of significant decimal digits, that is, the total number of
digits, including decimal places but excluding the point itself. The scale gives the
total number of decimal places. For example, the exact numeric value —12.345 has
precision 5 and scale 3. A special case of exact numeric occurs with integers. There
are several ways of specifying an exact numeric data type:

NUMERIC | precision [, scale]]
DECIMAL [precision [, scale]]
INTEGER
SMALLINT
BIGINT
INTEGER can be abbreviated to INT and DECIMAL to DEC

NUMERIC and DECIMAL store numbers in decimal notation. The default scale
is always 0; the default precision is implementation-defined. INTEGER is used for
large positive or negative whole numbers. SMALLINT is used for small positive or
negative whole numbers and BIGINT for very large whole numbers. By specifying
this data type, less storage space can be reserved for the data. For example, the
maximum absolute value that can be stored with SMALLINT might be 32 767. The
column rooms of the PropertyForRent table, which represents the number of rooms in
a property, is obviously a small integer and can be declared as:

7.1 The ISO SQL Data Types

rooms SMALLINT

The column salary of the Staff table can be declared as:
salary DECIMAL(7,2)

which can handle a value up to 99,999.99.

Approximate numeric data

The approximate numeric data type is used for defining numbers that do not have
an exact representation, such as real numbers. Approximate numeric, or floating
point, notation is similar to scientific notation, in which a number is written as
a mantissa times some power of ten (the exponent). For example, 10E3, +5.2E6,
—0.2E—4. There are several ways of specifying an approximate numeric data type:

FLOAT [precision]
REAL
DOUBLE PRECISION

The precision controls the precision of the mantissa. The precision of REAL and
DOUBLE PRECISION is implementation-defined.

Datetime data

The datetime data type is used to define points in time to a certain degree of accu-
racy. Examples are dates, times, and times of day. The ISO standard subdivides
the datetime data type into YEAR, MONTH, DAY, HOUR, MINUTE, SECOND,
TIMEZONE_HOUR, and TIMEZONE_MINUTE. The latter two fields specify the
hour and minute part of the time zone offset from Universal Coordinated Time
(which used to be called Greenwich Mean Time). Three types of datetime data type
are supported:

DATE
TIME [timePrecision] [WITH TIME ZONE]
TIMESTAMP [timePrecision] [WITH TIME ZONE]

DATE is used to store calendar dates using the YEAR, MONTH, and DAY fields.
TIME is used to store time using the HOUR, MINUTE, and SECOND fields.
TIMESTAMP is used to store date and times. The timePrecision is the number of
decimal places of accuracy to which the SECOND field is kept. If not specified,
TIME defaults to a precision of 0 (that is, whole seconds), and TIMESTAMP
defaults to 6 (that is, microseconds). The WITH TIME ZONE keyword controls the
presence of the TIMEZONE_HOUR and TIMEZONE_MINUTE fields. For exam-
ple, the column date of the Viewing table, which represents the date (year, month,
day) that a client viewed a property, is declared as:

viewDate DATE

Interval data

The interval data type is used to represent periods of time. Every interval data
type consists of a contiguous subset of the fields: YEAR, MONTH, DAY, HOUR,

237

238 Chapter 7 SQL: Data Definition

TABLE 7.2 SO SQL scalar operators.

OPERATOR
OCTET_LENGTH

CHAR_LENGTH

CAST

CURRENT_USER
or USER

SESSION_USER
SYSTEM_USER

LOWER
UPPER

TRIM

POSITION
SUBSTRING

CASE

CURRENT_DATE
CURRENT_TIME

CURRENT_
TIMESTAMP
EXTRACT
ABS

MOD

LN

EXP

MEANING
Retumns the length of a string in octets (bit length divided by 8). For example, OCTET _
LENGTH(*'FFFF) retumns 2.

Returns the length of a string in characters (or octets, if the string is a bit string). For
example, CHAR_LENGTH (‘Beech’) retums 5.

Converts a value expression of one data type into a value in another data type. For
example, CAST(5.2E6 AS INTEGER).

Concatenates two character strings or bit strings. For example, fName || IName.

Retums a character string representing the current authorization identifier (informally, the
current user name).

Returns a character string representing the SQL-session authorization identifier.

Returns a character string representing the identifier of the user who invoked the current
module.

Converts uppercase letters to lowercase. For example, LOWER(SELECT
fName FROM Staff WHERE staffNo = ‘SL21") retumns ‘john’.

Converts lower-case letters to upper-case. For example, UPPER(SELECT fName
FROM staff WHERE staffNo = ‘SL21") returns JOHN'.

Removes leading (LEADING), trailing (TRAILING), or both leading and trailing
(BOTH) characters from a string. For example, TRIM(BOTH * FROM “*#** Hello
World ###) returns ‘Hello World'.

Returns the position of one string within another string. For example, POSITION
(‘ee” IN ‘Beech’) returns 2.

Returns a substring selected from within a string. For example, SUBSTRING
(‘Beech FROM | TO 3) retumns the string ‘Bee'.

Retumns one of a specified set of values, based on some condition. For example,

CASE type
‘WHEN ‘House' THEN |
WHEN ‘Flat’ THEN 2
ELSE 0

END

Returns the current date in the time zone that is local to the user.

Returns the current time in the time zone that is the current default for the session. For
example, CURRENT_TIME(6) gives time to microseconds precision.

Returns the current date and time in the time zone that is the current default for the
session. For example, CURRENT_TIMESTAMP(0) gives time to seconds precision.

Retumns the value of a specified field from a datetime or interval value. For example,
EXTRACT(YEAR FROM Registration.dateJoined).

Operates on a numeric argument and retumns its absolute value in the same most specific
type. For example, ABS(—17.1) returns 17.1.

Operates on two exact numeric arguments with scale O and retumns the modulus
(remainder) of the first argument divided by the second argument as an exact numeric
with scale 0. For example, MOD(26, | 1) returns 4.

Computes the natural logarithm of its argument. For example, LN(65) returns
4.174 (approx).

Computes the exponential function, that is, e, (the base of natural logarithms) raised to
the power equal to its argument. For example, EXP(2) retumns 7.389 (approx).

7.1 The ISO SQL Data Types

POWER Raises its first argument to the power of its second argument. For example,
POWER(2,3) returns 8.

SQRT Computes the square root of its argument. For example, SQRT (1 6) retumns 4.

FLOOR Computes the greatest integer less than or equal to its argument. For example,
FLOOR(I5.7) retums 5.

CEIL Computes the least integer greater than or equal to its argument. For example,

CEIL(15.7) returns 6.

MINUTE, SECOND. There are two classes of interval data type: year—-month inter-
vals and day-time intervals. The year-month class may contain only the YEAR and/
or the MONTH fields; the day—time class may contain only a contiguous selection
from DAY, HOUR, MINUTE, SECOND. The format for specifying the interval
data type is:

INTERVAL {{startField TO endField} singleDatetimeField}

startField = YEAR | MONTH | DAY | HOUR | MINUTE
[(intervalLeadingFieldPrecision)]

endField = YEAR | MONTH | DAY | HOUR | MINUTE | SECOND
[(fractionalSecondsPrecision)]

singleDatetimeField = startField | SECOND
[(intervalLeadingFieldPrecision [, fractionalSecondsPrecision])]

In all cases, startField has a leading field precision that defaults to 2. For example:
INTERVAL YEAR(2) TO MONTH

represents an interval of time with a value between 0 years 0 months, and 99 years
11 months. In addition,

INTERVAL HOUR TO SECOND(4)

represents an interval of time with a value between 0 hours 0 minutes 0 seconds
and 99 hours 59 minutes 59.9999 seconds (the fractional precision of second is 4).

Large objects

Alarge object is a data type that holds a large amount of data, such as a long text file
or a graphics file. Three different types of large object data types are defined in SQL.:

+ Binary Large Object (BLOB), a binary string that does not have a character set
or collation association,;

+ Character Large Object (CLOB) and National Character Large Object (NCLOB),
both character strings.

We discuss large objects in more detail in Chapter 9.

Scalar operators

SQL provides a number of built-in scalar operators and functions that can be used
to construct a scalar expression, that is, an expression that evaluates to a scalar
value. Apart from the obvious arithmetic operators (+, —, *, /), the operators shown
in Table 7.2 are available.

239

239

240 | Chapter 7 SQL: Data Definition

1.2 Integrity Enhancement Feature

-,

In this section, we examine the facilities provided by the SQL standard for integrity
control. Integrity control consists of constraints that we wish to impose in order to
protect the database from becoming inconsistent. We consider five types of integrity
constraint (see Section 4.3):

« required data;

+ domain constraints;
- entity integrity;

- referential integrity;

- general constraints.

These constraints can be defined in the CREATE and ALTER TABLE statements,
as we will explain shortly.

7.2.1 Required Data

Some columns must contain a valid value; they are not allowed to contain nulls. A
null is distinct from blank or zero, and is used to represent data that is either not
available, missing, or not applicable (see Section 4.3.1). For example, every mem-
ber of staff must have an associated job position (for example, Manager, Assistant,
and so on). The ISO standard provides the NOT NULL column specifier in the
CREATE and ALTER TABLE statements to provide this type of constraint. When
NOT NULL is specified, the system rejects any attempt to insert a null in the
column. If NULL is specified, the system accepts nulls. The ISO default is NULL.
For example, to specify that the column position of the Staff table cannot be null, we
define the column as:

position VARCHAR(10) NOT NULL

7.2.2 Domain Constraints

Every column has a domain; in other words, a set of legal values (see Section 4.2.1).
For example, the sex of a member of staft is either ‘M’ or ‘F’, so the domain of
the column sex of the Staff table is a single character string consisting of either ‘M’
or ‘F’. The ISO standard provides two mechanisms for specifying domains in the
CREATE and ALTER TABLE statements. The first is the CHECK clause, which
allows a constraint to be defined on a column or the entire table. The format of the
CHECK clause is:

CHECK (searchCondition)

In a column constraint, the CHECK clause can reference only the column being
defined. Thus, to ensure that the column sex can be specified only as ‘M’ or ‘F’, we
could define the column as:

sex CHAR NOT NULL CHECK (sex IN (‘M’, ‘F"))

7.2 Integrity Enhancement Feature

However, the ISO standard allows domains to be defined more explicitly using the
CREATE DOMAIN statement:

CREATE DOMAIN DomainName [AS] dataType
[DEFAULT defaultOption]
[CHECK (searchCondition)]

A domain is given a name, DomainName, a data type (as described in Section 7.1.2),
an optional default value, and an optional CHECK constraint. This is not the com-
plete definition, but it is sufficient to demonstrate the basic concept. Thus, for the
previous example, we could define a domain for sex as:

CREATE DOMAIN SexType AS CHAR
DEFAULT ‘M’
CHECK (VALUE IN (‘M’, ‘F"));

This definition creates a domain SexType that consists of a single character with
either the value ‘M’ or ‘F’. When defining the column sex, we can now use the
domain name SexType in place of the data type CHAR:

sex SexType NOT NULL

The searchCondition can involve a table lookup. For example, we can create a
domain BranchNumber to ensure that the values entered correspond to an existing
branch number in the Branch table, using the statement:

CREATE DOMAIN BranchNumber AS CHAR(4)
CHECK (VALUE IN (SELECT branchNo FROM Branch));

The preferred method of defining domain constraints is using the CREATE
DOMAIN statement. Domains can be removed from the database using the DROP
DOMAIN statement:

DROP DOMAIN DomainName [RESTRICT | CASCADE]

The drop behavior, RESTRICT or CASCADE, specifies the action to be taken if the
domain is currently being used. If RESTRICT is specified and the domain is used
in an existing table, view, or assertion definition (see Section 7.2.5), the drop will
fail. In the case of CASCADE, any table column that is based on the domain is auto-
matically changed to use the domain’s underlying data type, and any constraint or
default clause for the domain is replaced by a column constraint or column default
clause, if appropriate.

7.2.3 Entity Integrity

The primary key of a table must contain a unique, nonnull value for each row (see
Section 4.3.2). For example, each row of the PropertyForRent table has a unique
value for the property number propertyNo, which uniquely identifies the property
represented by that row. The ISO standard supports entity integrity with the
PRIMARY KEY clause in the CREATE and ALTER TABLE statements. For exam-
ple, to define the primary key of the PropertyForRent table, we include the following
clause:

PRIMARY KEY (propertyNo)

241

242

Chapter 7 SQL: Data Definition

To define a composite primary key, we specify multiple column names in the
PRIMARY KEY clause, separating each by a comma. For example, to define the
primary key of the Viewing table, which consists of the columns clientNo and
propertyNo, we include the clause:

PRIMARY KEY/(clientNo, propertyNo)

The PRIMARY KEY clause can be specified only once per table. However, it is
still possible to ensure uniqueness for any alternate keys in the table using the
keyword UNIQUE. Every column that appears in a UNIQUE clause must also be
declared as NOT NULL. There may be as many UNIQUE clauses per table as
required. SQL rejects any INSERT or UPDATE operation that attempts to create
a duplicate value within each candidate key (that is, primary key or alternate key).
For example, with the Viewing table we could also have written:

clientNo VARCHAR(5) NOT NULL,
propertyNo VARCHAR(5) NOT NULL,
UNIQUE (clientNo, propertyNo)

7.2.4 Referential Integrity

A foreign key is a column, or set of columns, that links each row in the child table
containing the foreign key to the row of the parent table containing the matching
candidate key value. Referential integrity means that, if the foreign key contains a
value, that value must refer to an existing, valid row in the parent table (see Section
4.3.3). For example, the branch number column branchNo in the PropertyForRent table
links the property to that row in the Branch table where the property is assigned. If the
branch number is not null, it must contain a valid value from the column branchNo of
the Branch table, or the property is assigned to an invalid branch office.

The ISO standard supports the definition of foreign keys with the FOREIGN
KEY clause in the CREATE and ALTER TABLE statements. For example, to define
the foreign key branchNo of the PropertyForRent table, we include the clause:

FOREIGN KEY (branchNo) REFERENCES Branch

SQL rejects any INSERT or UPDATE operation that attempts to create a foreign
key value in a child table without a matching candidate key value in the parent
table. The action SQL takes for any UPDATE or DELETE operation that attempts
to update or delete a candidate key value in the parent table that has some matching
rows in the child table is dependent on the referential action specified using the ON
UPDATE and ON DELETE subclauses of the FOREIGN KEY clause. When the user
attempts to delete a row from a parent table, and there are one or more matching
rows in the child table, SQL supports four options regarding the action to be taken:

« CASCADE: Delete the row from the parent table and automatically delete the
matching rows in the child table. Because these deleted rows may themselves
have a candidate key that is used as a foreign key in another table, the foreign
key rules for these tables are triggered, and so on in a cascading manner.

« SET NULL: Delete the row from the parent table and set the foreign key value(s)
in the child table to NULL. This option is valid only if the foreign key columns
do not have the NOT NULL qualifier specified.

7.2 Integrity Enhancement Feature

« SET DEFAULT: Delete the row from the parent table and set each component of
the foreign key in the child table to the specified default value. This option is valid
only if the foreign key columns have a DEFAULT value specified (see Section 7.3.2).

+ NO ACTION: Reject the delete operation from the parent table. This is the
default setting if the ON DELETE rule is omitted.

SQL supports the same options when the candidate key in the parent table is
updated. With CASCADE, the foreign key value(s) in the child table are set to the new
value(s) of the candidate key in the parent table. In the same way, the updates cascade
if the updated column(s) in the child table reference foreign keys in another table.

For example, in the PropertyForRent table the staff number staffNo is a foreign key
referencing the Staff table. We can specify a deletion rule such that if a staff record
is deleted from the Staff table, the values of the corresponding staffNo column in the
PropertyForRent table are set to NULL.:

FOREIGN KEY (staffNo) REFERENCES Staff ON DELETE SET NULL

Similarly, the owner number ownerNo in the PropertyForRent table is a foreign key
referencing the PrivateOwner table. We can specify an update rule such that if an
owner number is updated in the PrivateOwner table, the corresponding column(s) in
the PropertyForRent table are set to the new value:

FOREIGN KEY (ownerNo) REFERENCES PrivateOwner ON UPDATE CASCADE

7.2.5 General Constraints

Updates to tables may be constrained by enterprise rules governing the real-world
transactions that are represented by the updates (see Section 4.3.4). For example,
DreamHome may have a rule that prevents a member of staff from managing more
than 100 properties at the same time. The ISO standard allows general constraints
to be specified using the CHECK and UNIQUE clauses of the CREATE and
ALTER TABLE statements and the CREATE ASSERTION statement. We discussed
the CHECK and UNIQUE clauses earlier in this section. The CREATE ASSERTION
statement is an integrity constraint that is not directly linked with a table definition.
The format of the statement is:

CREATE ASSERTION AssertionName
CHECK (searchCondition)

This statement is very similar to the CHECK clause discussed earlier. However, when
a general constraint involves more than one table, it may be preferable to use an
ASSERTION rather than duplicate the check in each table or place the constraint in
an arbitrary table. For example, to define the general constraint that prevents a mem-
ber of staff from managing more than 100 properties at the same time, we could write:

CREATE ASSERTION StaffNotHandlingTooMuch
CHECK (NOT EXISTS (SELECT staffNo
FROM PropertyForRent
GROUP BY staffNo
HAVING COUNT(*) > 100))

We show how to use these integrity features in the following section when we exam-
ine the CREATE and ALTER TABLE statements.

243

244 | Chapter 7 SQL: Data Definition

7.3 Data Definition

-

The SQL DDL allows database objects such as schemas, domains, tables, views, and

indexes to be created and destroyed. In this section, we briefly examine how to cre-

ate and destroy schemas, tables, and indexes. We discuss how to create and destroy

views in the next section. The ISO standard also allows the creation of character

sets, collations, and translations. However, we will not consider these database

objects in this book. The interested reader is referred to Cannan and Otten, 1993.
The main SQL data definition language statements are:

CREATE SCHEMA DROP SCHEMA
CREATE DOMAIN ALTER DOMAIN DROP DOMAIN
CREATE TABLE ALTER TABLE DROP TABLE
CREATE VIEW DROP VIEW

These statements are used to create, change, and destroy the structures that make
up the conceptual schema. Although not covered by the SQL standard, the follow-
ing two statements are provided by many DBMSs:

CREATE INDEX DROP INDEX

Additional commands are available to the DBA to specify the physical details of data
storage; however, we do not discuss these commands here, as they are system-specific.

7.3.1 Creating a Database

The process of creating a database differs significantly from product to product.
In multi-user systems, the authority to create a database is usually reserved for the
DBA. In a single-user system, a default database may be established when the sys-
tem is installed and configured and others can be created by the user as and when
required. The ISO standard does not specify how databases are created, and each
dialect generally has a different approach.

According to the ISO standard, relations and other database objects exist in
an environment. Among other things, each environment consists of one or more
catalogs, and each catalog consists of a set of schemas. A schema is a named collec-
tion of database objects that are in some way related to one another (all the objects
in the database are described in one schema or another). The objects in a schema
can be tables, views, domains, assertions, collations, translations, and character sets.
All the objects in a schema have the same owner and share a number of defaults.

The standard leaves the mechanism for creating and destroying catalogs as
implementation-defined, but provides mechanisms for creating and destroying
schemas. The schema definition statement has the following (simplified) form:

CREATE SCHEMA [Name | AUTHORIZATION Creatorldentifier]
Therefore, if the creator of a schema SqlTests is Smith, the SQL statement is:
CREATE SCHEMA SqlTests AUTHORIZATION Smith;

The ISO standard also indicates that it should be possible to specity within this
statement the range of facilities available to the users of the schema, but the details
of how these privileges are specified are implementation-dependent.

7.3 Data Definition

A schema can be destroyed using the DROP SCHEMA statement, which has the
following form:

DROP SCHEMA Name [RESTRICT | CASCADE]

If RESTRICT is specified, which is the default if neither qualifier is specified, the
schema must be empty or the operation fails. If CASCADE is specified, the opera-
tion cascades to drop all objects associated with the schema in the order defined
previously. If any of these drop operations fail, the DROP SCHEMA fails. The
total effect of a DROP SCHEMA with CASCADE can be very extensive and should
be carried out only with extreme caution. It should be noted, however, that the
CREATE and DROP SCHEMA statements are not always supported.

7.3.2 Creating a Table (CREATE TABLE)

Having created the database structure, we may now create the table structures
for the base relations to be stored in the database. This task is achieved using the
CREATE TABLE statement, which has the following basic syntax:

CREATE TABLE TableName
{(columName dataType [NOT NULL] [UNIQUE]
[DEFAULT defaultOption] [CHECK (searchCondition)] [, . . .]}
[PRIMARY KEY (listOfColumns),]
{[UNIQUE (listOfColumns)] [, . . .]}
{[FOREIGN KEY (listOfForeignKeyColumns)
REFERENCES ParentTableName [(listOfCandidateKeyColumns)]
[MATCH {PARTIAL | FULL}
[ON UPDATE referentialAction]
[ON DELETE referentialAction]] [, . . .]}
{[CHECK (searchCondition)] [, . . .]})

As we discussed in the previous section, this version of the CREATE TABLE state-
ment incorporates facilities for defining referential integrity and other constraints.
There is significant variation in the support provided by different dialects for this
version of the statement. However, when it is supported, the facilities should be used.

The CREATE TABLE statement creates a table called TableName consisting of
one or more columns of the specified dataType. The set of permissible data types is
described in Section 7.1.2. The optional DEFAULT clause can be specified to pro-
vide a default value for a particular column. SQL uses this default value whenever
an INSERT statement fails to specify a value for the column. Among other values,
the defaultOption includes literals. The NOT NULL, UNIQUE, and CHECK clauses
were discussed in the previous section. The remaining clauses are known as table
constraints and can optionally be preceded with the clause:

CONSTRAINT ConstraintName

which allows the constraint to be dropped by name using the ALTER TABLE state-
ment (see following).

The PRIMARY KEY clause specifies the column or columns that form the primary
key for the table. If this clause is available, it should be specified for every table cre-
ated. By default, NOT NULL is assumed for each column that comprises the primary

245

246

Chapter 7 SQL: Data Definition

key. Only one PRIMARY KEY clause is allowed per table. SQL rejects any INSERT
or UPDATE operation that attempts to create a duplicate row within the PRIMARY
KEY column(s). In this way, SQL guarantees the uniqueness of the primary key.

The FOREIGN KEY clause specifies a foreign key in the (child) table and the
relationship it has to another (parent) table. This clause implements referential
integrity constraints. The clause specifies the following:

« A listOfForeignKeyColumns, the column or columns from the table being created that
form the foreign key.

« A REFERENCES subclause, giving the parent table, that is, the table holding the
matching candidate key. If the listOfCandidateKeyColumns is omitted, the foreign
key is assumed to match the primary key of the parent table. In this case, the par-
ent table must have a PRIMARY KEY clause in its CREATE TABLE statement.

+ An optional update rule (ON UPDATE) for the relationship that specifies the
action to be taken when a candidate key is updated in the parent table that
matches a foreign key in the child table. The referentialAction can be CASCADE,
SET NULL, SET DEFAULT, or NO ACTION. If the ON UPDATE clause is omit-
ted, the default NO ACTION is assumed (see Section 7.2).

+ An optional delete rule (ON DELETE) for the relationship that specifies the
action to be taken when a row is deleted from the parent table that has a candi-
date key that matches a foreign key in the child table. The referentialAction is
the same as for the ON UPDATE rule.

+ By default, the referential constraint is satisfied if any component of the for-
eign key is null or there is a matching row in the parent table. The MATCH
option provides additional constraints relating to nulls within the foreign key. If
MATCH FULL is specified, the foreign key components must all be null or must
all have values. If MATCH PARTIAL is specified, the foreign key components
must all be null, or there must be at least one row in the parent table that could
satisfy the constraint if the other nulls were correctly substituted. Some authors
argue that referential integrity should imply MATCH FULL.

There can be as many FOREIGN KEY clauses as required. The CHECK and
CONSTRAINT clauses allow additional constraints to be defined. If used as a col-
umn constraint, the CHECK clause can reference only the column being defined.
Constraints are in effect checked after every SQL statement has been executed,
although this check can be deferred until the end of the enclosing transaction
(see Section 7.5). Example 7.1 demonstrates the potential of this version of the
CREATE TABLE statement.

EXAMPLE 7.1 CREATE TABLE
Create the PropertyForRent table using the available features of the CREATE TABLE statement.

CREATE DOMAIN OwnerNumber AS VARCHAR(5)

CHECK (VALUE IN (SELECT ownerNo FROM PrivateOwner));
CREATE DOMAIN StaffNumber AS VARCHAR(5)

CHECK (VALUE IN (SELECT staffNo FROM Staff));
CREATE DOMAIN BranchNumber AS CHAR(4)

CHECK (VALUE IN (SELECT branchNo FROM Branch));
CREATE DOMAIN PropertyNumber AS VARCHAR(5);

7.3 Data Definition

CREATE DOMAIN Street AS VARCHAR(25);

CREATE DOMAIN City AS VARCHAR(15);

CREATE DOMAIN Postcode AS VARCHAR(8);

CREATE DOMAIN PropertyType AS CHAR(1)
CHECK(VALUE IN (‘B’, ‘C’, ‘'D’, ‘E’, ‘F’, ‘M’, ‘S"));

CREATE DOMAIN PropertyRooms AS SMALLINT;
CHECK(VALUE BETWEEN 1 AND 15);

CREATE DOMAIN PropertyRent AS DECIMAL(6,2)
CHECK(VALUE BETWEEN 0 AND 9999.99);

CREATE TABLE PropertyForRent(

propertyNo PropertyNumber NOT NULL,

street Street NOT NULL,

city City NOT NULL,

postcode PostCode,

type PropertyType NOT NULL DEFAULT ‘F,
rooms PropertyRooms NOT NULL DEFAULT 4,
rent PropertyRent NOT NULL DEFAULT 600,
ownerNo OwnerNumber NOT NULL,

staffNo StaffNumber

CONSTRAINT StaffNotHandlingTooMuch
CHECK (NOT EXISTS (SELECT staffNo
FROM PropertyForRent
GROUP BY staffNo
HAVING COUNT(*) > 100)),
branchNo BranchNumber NOT NULL,
PRIMARY KEY (propertyNo),
FOREIGN KEY (staffNo) REFERENCES Staff ON DELETE SET NULL
ON UPDATE CASCADE,
FOREIGN KEY (ownerNo) REFERENCES PrivateOwner ON DELETE NO
ACTION ON UPDATE CASCADE,
FOREIGN KEY (branchNo) REFERENCES Branch ON DELETE NO
ACTION ON UPDATE CASCADE);

A default value of ‘F’ for ‘Flat’ has been assigned to the property type column
type. A CONSTRAINT for the staff number column has been specified to ensure
that a member of staff does not handle too many properties. The constraint checks
whether the number of properties the staff member currently handles is more than
than 100.

The primary key is the property number, propertyNo. SQL automatically enforces
uniqueness on this column. The staff number, staffNo, is a foreign key referenc-
ing the Staff table. A deletion rule has been specified such that, if a record is
deleted from the Staff table, the corresponding values of the staffNo column in the
PropertyForRent table are set to NULL. Additionally, an update rule has been speci-
fied such that if a staff number is updated in the Staff table, the corresponding
values in the staffNo column in the PropertyForRent table are updated accordingly.
The owner number, ownerNo, is a foreign key referencing the PrivateOwner table.
A deletion rule of NO ACTION has been specified to prevent deletions from the
PrivateOwner table if there are matching ownerNo values in the PropertyForRent table.
An update rule of CASCADE has been specified such that, if an owner number is

247

248

Chapter 7 SQL: Data Definition

updated, the corresponding values in the ownerNo column in the PropertyForRent
table are set to the new value. The same rules have been specified for the branchNo
column. In all FOREIGN KEY constraints, because the listOfCandidateKeyColumns
has been omitted, SQL assumes that the foreign keys match the primary keys of
the respective parent tables.

Note, we have not specified NOT NULL for the staff number column staffNo,
because there may be periods of time when there is no member of staff allocated to
manage the property (for example, when the property is first registered). However, the
other foreign key columns—ownerNo (the owner number) and branchNo (the branch
number)—must be specified at all times.

7.3.3 Changing a Table Definition (ALTER TABLE)

The ISO standard provides an ALTER TABLE statement for changing the structure
of a table once it has been created. The definition of the ALTER TABLE statement
in the ISO standard consists of six options to:

« add a new column to a table;
+ drop a column from a table;
- add a new table constraint;

- drop a table constraint;

« set a default for a column;

« drop a default for a column.
The basic format of the statement is:

ALTER TABLE TableName

[ADD [COLUMN] columnName dataType [NOT NULL] [UNIQUE]
[DEFAULT defaultOption] [CHECK (searchCondition)]]

[DROP [COLUMN] columnName [RESTRICT | CASCADE]]

[ADD [CONSTRAINT [ConstraintName]] tableConstraintDefinition]
[DROP CONSTRAINT ConstraintName [RESTRICT | CASCADE]]
[ALTER [COLUMN] SET DEFAULT defaultOption]

[ALTER [COLUMN] DROP DEFAULT]

where the parameters are as defined for the CREATE TABLE statement in the
previous section. A tableConstraintDefinition is one of the clauses: PRIMARY KEY,
UNIQUE, FOREIGN KEY, or CHECK. The ADD COLUMN clause is similar to the
definition of a column in the CREATE TABLE statement. The DROP COLUMN
clause specifies the name of the column to be dropped from the table definition,
and has an optional qualifier that specifies whether the DROP action is to cascade
or not:

« RESTRICT: The DROP operation is rejected if the column is referenced by
another database object (for example, by a view definition). This is the default
setting.

« CASCADE: The DROP operation proceeds and automatically drops the column
from any database objects it is referenced by. This operation cascades, so that if
a column is dropped from a referencing object, SQL checks whether that column
is referenced by any other object and drops it from there if it is, and so on.

7.3 Data Definition

EXAMPLE 7.2 ALTER TABLE

(a) Change the Staff table by removing the default of ‘Assistant’ for the position column and setting
the default for the sex column to female (‘F).

ALTER TABLE Staff

ALTER position DROP DEFAULT;
ALTER TABLE Staff

ALTER sex SET DEFAULT F’;

(b) Change the PropertyForRent table by removing the constraint that staff are not allowed to
handle more than 100 properties at a time. Change the Client table by adding a new column
representing the preferred number of rooms.

ALTER TABLE PropertyForRent
DROP CONSTRAINT StaffNotHandlingTooMuch;
ALTER TABLE Client

ADD prefNoRooms PropertyRooms;

The ALTER TABLE statement is not available in all dialects of SQL. In some dia-
lects, the ALTER TABLE statement cannot be used to remove an existing column
from a table. In such cases, if a column is no longer required, the column could
simply be ignored but kept in the table definition. If, however, you wish to remove
the column from the table, you must:

+ upload all the data from the table;

+ remove the table definition using the DROP TABLE statement;

- redefine the new table using the CREATE TABLE statement;

+ reload the data back into the new table.

The upload and reload steps are typically performed with special-purpose utility
programs supplied with the DBMS. However, it is possible to create a temporary
table and use the INSERT . . . SELECT statement to load the data from the old
table into the temporary table and then from the temporary table into the new table.

7.3.4 Removing a Table (DROP TABLE)

Over time, the structure of a database will change; new tables will be created and
some tables will no longer be needed. We can remove a redundant table from the
database using the DROP TABLE statement, which has the format:

DROP TABLE TableName [RESTRICT | CASCADE]
For example, to remove the PropertyForRent table we use the command:
DROP TABLE PropertyForRent;

Note, however, that this command removes not only the named table, but also all
the rows within it. To simply remove the rows from the table but retain the table
structure, use the DELETE statement instead (see Section 6.3.10). The DROP
TABLE statement allows you to specify whether the DROP action is to be cascaded:

« RESTRICT: The DROP operation is rejected if there are any other objects that
depend for their existence upon the continued existence of the table to be dropped.

249

250

Chapter 7 SQL: Data Definition

« CASCADE: The DROP operation proceeds and SQIL automatically drops all
dependent objects (and objects dependent on these objects).

The total effect of a DROP TABLE with CASCADE can be very extensive and should
be carried out only with extreme caution. One common use of DROP TABLE is to
correct mistakes made when creating a table. If a table is created with an incorrect
structure, DROP TABLE can be used to delete the newly created table and start again.

7.3.5 Creating an Index (CREATE INDEX)

An index is a structure that provides accelerated access to the rows of a table based
on the values of one or more columns (see Appendix F for a discussion of indexes
and how they may be used to improve the efficiency of data retrievals). The pres-
ence of an index can significantly improve the performance of a query. However,
as indexes may be updated by the system every time the underlying tables are
updated, additional overheads may be incurred. Indexes are usually created to sat-
isfy particular search criteria after the table has been in use for some time and has
grown in size. The creation of indexes is not standard SQL. However, most dialects
support at least the following capabilities:

CREATE [UNIQUE] INDEX IndexName
ON TableName (columnName [ASC | DESC] [, . . .])

The specified columns constitute the index key and should be listed in major
to minor order. Indexes can be created only on base tables not on views. If the
UNIQUE clause is used, uniqueness of the indexed column or combination of col-
umns will be enforced by the DBMS. This is certainly required for the primary key
and possibly for other columns as well (for example, for alternate keys). Although
indexes can be created at any time, we may have a problem if we try to create a
unique index on a table with records in it, because the values stored for the indexed
column(s) may already contain duplicates. Therefore, it is good practice to create
unique indexes, at least for primary key columns, when the base table is created and
the DBMS does not automatically enforce primary key uniqueness.

For the Staff and PropertyForRent tables, we may want to create at least the
following indexes:

CREATE UNIQUE INDEX StaffNoind ON Staff (staffNo);
CREATE UNIQUE INDEX PropertyNolind ON PropertyForRent (propertyNo);

For each column, we may specify that the order is ascending (ASC) or descending
(DESC), with ASC being the default setting. For example, if we create an index on
the PropertyForRent table as:

CREATE INDEX Rentind ON PropertyForRent (city, rent);

then an index called Rentind is created for the PropertyForRent table. Entries will be in
alphabetical order by city and then by rent within each city.

7.3.6 Removing an Index (DROP INDEX)

If we create an index for a base table and later decide that it is no longer needed,
we can use the DROP INDEX statement to remove the index from the database.
DROP INDEX has the following format:

7.4 Views

DROP INDEX IndexName
The following statement will remove the index created in the previous example:

DROP INDEX Rentind;

1.4 Views

-,

Recall from Section 4.4 the definition of a view:

The dynamic result of one or more relational operations operating on the
base relations to produce another relation. A view is a virtual relation that
does not necessarily exist in the database but can be produced upon request
by a particular user, at the time of request.

View

To the database user, a view appears just like a real table, with a set of named columns
and rows of data. However, unlike a base table, a view does not necessarily exist in the
database as a stored set of data values. Instead, a view is defined as a query on one
or more base tables or views. The DBMS stores the definition of the view in the data-
base. When the DBMS encounters a reference to a view, one approach is to look up
this definition and translate the request into an equivalent request against the source
tables of the view and then perform the equivalent request. This merging process,
called view resolution, is discussed in Section 7.4.3. An alternative approach, called
view materialization, stores the view as a temporary table in the database and main-
tains the currency of the view as the underlying base tables are updated. We discuss
view materialization in Section 7.4.8. First, we examine how to create and use views.

7.4.1 Creating a View (CREATE VIEW)
The format of the CREATE VIEW statement is:

CREATE VIEW ViewName [(newColumnName [, . . .])]
AS subselect [WITH [CASCADED | LOCAL] CHECK OPTION]

A view is defined by specifying an SQL SELECT statement. A name may optionally be
assigned to each column in the view. If a list of column names is specified, it must have
the same number of items as the number of columns produced by the subselect. If the list
of column names is omitted, each column in the view takes the name of the correspond-
ing column in the subselect statement. The list of column names must be specified if
there is any ambiguity in the name for a column. This may occur if the subselect includes
calculated columns, and the AS subclause has not been used to name such columns, or
it produces two columns with identical names as the result of a join.

The subselect is known as the defining query. It WITH CHECK OPTION is speci-
fied, SQL ensures that if a row fails to satisfy the WHERE clause of the defining query
of the view, it is not added to the underlying base table of the view (see Section 7.4.6).
It should be noted that to create a view successfully, you must have SELECT privilege
on all the tables referenced in the subselect and USAGE privilege on any domains
used in referenced columns. These privileges are discussed further in Section 7.6.
Although all views are created in the same way, in practice different types of views are
used for different purposes. We illustrate the different types of views with examples.

251

252 Chapter 7 SQL: Data Definition

EXAMPLE 7.3 Create a horizontal view

Create a view so that the manager at branch B003 can see the details only for staff who work in his
or her branch office.

A horizontal view restricts a user’s access to selected rows of one or more tables.

CREATE VIEW Manager3Staff
AS SELECT *

FROM Staff

WHERE branchNo = ‘B003’;

This creates a view called Manager3Staff with the same column names as the Staff table
but containing only those rows where the branch number is B003. (Strictly speaking, the
branchNo column is unnecessary and could have been omitted from the definition of the
view, as all entries have branchNo = ‘B003’.) If we now execute this statement:

SELECT * FROM Manager3Staff;

we get the result table shown in Table 7.3. To ensure that the branch manager can see
only these rows, the manager should not be given access to the base table Staff. Instead, the
manager should be given access permission to the view Manager3Staff. This, in effect, gives
the branch manager a customized view of the Staff table, showing only the staff at his or her
own branch. We discuss access permissions in Section 7.6.

TABLE 7.3 Data for view Manager3Staff.

staffNo fName IName position sex DOB salary branchNo
SG37 Ann Beech Assistant F |0-Nov-60 12000.00 BOO3
SGl4 David Ford Supervisor M 24-Mar-58 [8000.00 B0OO3
SG5 Susan Brand Manager F 3-Jun-40 24000.00 B0O3

EXAMPLE 7.4 Create a vertical view

Create a view of the staff details at branch BO03 that excludes salary information, so that only manag-
ers can access the salary details for staff who work at their branch.

A vertical view restricts a user’s access to selected columns of one or more tables.

CREATE VIEW Staff3

AS SELECT staffNo, fName, IName, position, sex
FROM Staff
WHERE branchNo = ‘B003’;

Note that we could rewrite this statement to use the Manager3Staff view instead of the
Staff table, thus:

CREATE VIEW Staff3
AS SELECT staffNo, fName, IName, position, sex
FROM Manager3Staff;

Either way, this creates a view called Staff3 with the same columns as the Staff table, but
excluding the salary, DOB, and branchNo columns. If we list this view, we get the result table

7.4 Views

shown in Table 7.4. To ensure that only the branch manager can see the salary details, staff
at branch B003 should not be given access to the base table Staff or the view Manager3Staff.
Instead, they should be given access permission to the view Staff3, thereby denying them
access to sensitive salary data.

Vertical views are commonly used where the data stored in a table is used by various

users or groups of users. They provide a private table for these users composed only
of the columns they need.

TABLE 7.4 Data for view Staff3.

staffNo fName IName position sex
SG37 Ann Beech Assistant F
SGl4 David Ford Supervisor M
SG5 Susan Brand Manager F

EXAMPLE 7.5 Grouped and joined views

Create a view of staff who manage properties for rent, which includes the branch number they work at,
their staff number, and the number of properties they manage (see Example 6.27).

CREATE VIEW StaffPropCnt (branchNo, staffNo, cnt)
AS SELECT s.branchNo, s.staffNo, COUNT(¥)
FROM Staff s, PropertyForRent p
WHERE s.staffNo = p.staffNo
GROUP BY s.branchNo, s.staffNo;

This example gives the data shown in Table 7.5. It illustrates the use of a subselect
containing a GROUP BY clause (giving a view called a grouped view), and contain-
ing multiple tables (giving a view called a joined view). One of the most frequent
reasons for using views is to simplify multi-table queries. Once a joined view has been
defined, we can often use a simple single-table query against the view for queries that
would otherwise require a multi-table join. Note that we have to name the columns
in the definition of the view because of the use of the unqualified aggregate function
COUNT in the subselect.

TABLE 7.5 Data for view StaffPropCnt.

branchNo staffNo cnt
BOO3 SGl4 |
BOO3 SG37 2
BOOS SL4| |
BOO7 SA9 |

7.4.2 Removing a View (DROP VIEW)

A view is removed from the database with the DROP VIEW statement:

DROP VIEW ViewName [RESTRICT | CASCADE]

253

254

Chapter 7 SQL: Data Definition

DROP VIEW causes the definition of the view to be deleted from the database. For
example, we could remove the Manager3Staff view using the following statement:

DROP VIEW Manager3Staff;

If CASCADE is specified, DROP VIEW deletes all related dependent objects; in
other words, all objects that reference the view. This means that DROP VIEW also
deletes any views that are defined on the view being dropped. If RESTRICT is
specified and there are any other objects that depend for their existence on the
continued existence of the view being dropped, the command is rejected. The
default setting is RESTRICT.

7.4.3 View Resolution

Having considered how to create and use views, we now look more closely at how a
query on a view is handled. To illustrate the process of view resolution, consider the
following query, which counts the number of properties managed by each member of
staff at branch office B003. This query is based on the StaffPropCnt view of Example 7.5:

SELECT staffNo, cnt

FROM StaffPropCnt
WHERE branchNo = ‘B003’
ORDER BY staffNo;

View resolution merges the example query with the defining query of the StaffPropCnt
view as follows:

(1) The view column names in the SELECT list are translated into their corre-
sponding column names in the defining query. This gives:

SELECT s.staffNo AS staffNo, COUNT(*) AS cnt

(2) View names in the FROM clause are replaced with the corresponding FROM
lists of the defining query:

FROM Staff s, PropertyForRent p

(3) The WHERE clause from the user query is combined with the WHERE clause
of the defining query using the logical operator AND, thus:

WHERE s.staffNo = p.staffNo AND branchNo = ‘B003’

(4) The GROUP BY and HAVING clauses are copied from the defining query. In
this example, we have only a GROUP BY clause:

GROUP BY s.branchNo, s.staffNo

(5) Finally, the ORDER BY clause is copied from the user query with the view col-
umn name translated into the defining query column name:

ORDER BY s.staffNo

(6) The final merged query becomes:

SELECT s.staffNo AS staffNo, COUNT(*) AS cnt
FROM Staff s, PropertyForRent p

7.4 Views

WHERE s.staffNo = p.staffNo AND branchNo = ‘B003’
GROUP BY s.branchNo, s.staffNo
ORDER BY s.staffNo;

This gives the result table shown in Table 7.6.

TABLE 7.6 Result table after view resolution.

staffNo cnt
SGl14 |
SG37 2

7.4.4 Restrictions on Views

The ISO standard imposes several important restrictions on the creation and use of
views, although there is considerable variation among dialects.

+ If a column in the view is based on an aggregate function, then the column may
appear only in SELECT and ORDER BY clauses of queries that access the view.
In particular, such a column may not be used in a WHERE clause and may not
be an argument to an aggregate function in any query based on the view. For
example, consider the view StaffPropCnt of Example 7.5, which has a column cnt
based on the aggregate function COUNT. The following query would fail:

SELECT COUNT(cnt)
FROM StaffPropCnt;

because we are using an aggregate function on the column cnt, which is itself
based on an aggregate function. Similarly, the following query would also fail:

SELECT *
FROM StaffPropCnt
WHERE cnt > 2;

because we are using the view column, cnt, derived from an aggregate function,
on the left-hand side of a WHERE clause.

+ A grouped view may never be joined with a base table or a view. For example, the
StaffPropCnt view is a grouped view, so any attempt to join this view with another
table or view fails.

7.4.5 View Updatability

All updates to a base table are immediately reflected in all views that encompass that
base table. Similarly, we may expect that if a view is updated, the base table(s) will reflect
that change. However, consider again the view StaffPropCnt of Example 7.5. Consider
what would happen if we tried to insert a record that showed that at branch B003, staft
member SG5 manages two properties, using the following insert statement:

INSERT INTO StaffPropCnt
VALUES (‘B003’, ‘SG5’, 2);

We have to insert two records into the PropertyForRent table showing which proper-
ties staff member SG5 manages. However, we do not know which properties they

255

256

Chapter 7 SQL: Data Definition

are; all we know is that this member of staff manages two properties. In other
words, we do not know the corresponding primary key values for the PropertyForRent
table. If we change the definition of the view and replace the count with the actual
property numbers as follows:

CREATE VIEW StaffPropList (branchNo, staffNo, propertyNo)
AS SELECT s.branchNo, s.staffNo, p.propertyNo

FROM Staff s, PropertyForRent p

WHERE s.staffNo = p.staffNo;

and we try to insert the record:

INSERT INTO StaffPropList
VALUES (‘B003’, ‘SG5’, ‘PG19’);

there is still a problem with this insertion, because we specified in the definition
of the PropertyForRent table that all columns except postcode and staffNo were not
allowed to have nulls (see Example 7.1). However, as the StaffPropList view excludes
all columns from the PropertyForRent table except the property number, we have no
way of providing the remaining nonnull columns with values.

The ISO standard specifies the views that must be updatable in a system that
conforms to the standard. The definition given in the ISO standard is that a view
is updatable if and only if:

« DISTINCT is not specified; that is, duplicate rows must not be eliminated from
the query results.

+ Every element in the SELECT list of the defining query is a column name (rather
than a constant, expression, or aggregate function) and no column name appears
more than once.

+ The FROM clause specifies only one table; that is, the view must have a single
source table for which the user has the required privileges. If the source table is
itself a view, then that view must satisfy these conditions. This, therefore, excludes
any views based on a join, union (UNION), intersection (INTERSECT), or differ-
ence (EXCEPT).

« The WHERE clause does not include any nested SELECTs that reference the
table in the FROM clause.

« There is no GROUP BY or HAVING clause in the defining query.

In addition, every row that is added through the view must not violate the integrity
constraints of the base table. For example, if a new row is added through a view,
columns that are not included in the view are set to null, but this must not violate a
NOT NULL integrity constraint in the base table. The basic concept behind these
restrictions is as follows:

Updatable For a view to be updatable, the DBMS must be able to trace any row
view or column back to its row or column in the source table.

7.4.6 WITH CHECK OPTION

Rows exist in a view, because they satisfy the WHERE condition of the defining
query. If a row is altered such that it no longer satisfies this condition, then it will

7.4 Views

disappear from the view. Similarly, new rows will appear within the view when an
insert or update on the view causes them to satisfy the WHERE condition. The rows
that enter or leave a view are called migrating rows.

Generally, the WITH CHECK OPTION clause of the CREATE VIEW statement
prohibits a row from migrating out of the view. The optional qualifiers LOCAL/
CASCADED are applicable to view hierarchies, that is, a view that is derived from
another view. In this case, if WITH LOCAL CHECK OPTION is specified, then any
row insert or update on this view, and on any view directly or indirectly defined
on this view, must not cause the row to disappear from the view, unless the row
also disappears from the underlying derived view/table. If the WITH CASCADED
CHECK OPTION is specified (the default setting), then any row insert or update
on this view and on any view directly or indirectly defined on this view must not
cause the row to disappear from the view.

This feature is so useful that it can make working with views more attractive than
working with the base tables. When an INSERT or UPDATE statement on the view
violates the WHERE condition of the defining query, the operation is rejected. This
behavior enforces constraints on the database and helps preserve database integ-
rity. The WITH CHECK OPTION can be specified only for an updatable view, as
defined in the previous section.

EXAMPLE 7.6 WITH CHECK OPTION
Consider again the view created in Example 7.3:

CREATE VIEW Manager3Staff
AS SELECT *

FROM Staff

WHERE branchNo = ‘B003’
WITH CHECK OPTION;

with the virtual table shown in Table 7.3. If we now attempt to update the branch
number of one of the rows from B003 to B005, for example:

UPDATE Manager3Staff
SET branchNo = ‘B005’
WHERE staffNo = ‘SG37’;

then the specification of the WITH CHECK OPTION clause in the definition
of the view prevents this from happening, as it would cause the row to migrate
from this horizontal view. Similarly, if we attempt to insert the following row
through the view:

INSERT INTO Manager3Staff
VALUES('SL15’, ‘Mary’, ‘Black’, ‘Assistant’, ‘F’, DATE 1967-06-21°, 8000, ‘B002’);

then the specification of WITH CHECK OPTION would prevent the row from being
inserted into the underlying Staff table and immediately disappearing from this view
(as branch B002 is not part of the view).

Now consider the situation where Manager3Staff is defined not on Staff directly but
on another view of Staff:

257

258

Chapter 7 SQL: Data Definition

CREATE VIEW LowSalary CREATE VIEW HighSalary CREATE VIEW Manager3Staff
AS SELECT * AS SELECT * AS SELECT *
FROM Staff FROM LowSalary FROM HighSalary
WHERE salary > 9000; WHERE salary > 10000 WHERE branchNo = ‘B003’;
WITH LOCAL CHECK OPTION;

If we now attempt the following update on Manager3Staff:

UPDATE Manager3Staff
SET salary = 9500
WHERE staffNo = ‘SG37;

then this update would fail: although the update would cause the row to disappear
from the view HighSalary, the row would not disappear from the table LowSalary that
HighSalary is derived from. However, if instead the update tried to set the salary to
8000, then the update would succeed, as the row would no longer be part of LowSalary.
Alternatively, if the view HighSalary had specified WITH CASCADED CHECK
OPTION, then setting the salary to either 9500 or 8000 would be rejected, because the
row would disappear from HighSalary. Therefore, to ensure that anomalies like this do
not arise, each view should normally be created using the WITH CASCADED CHECK

OPTION.

7.4.7 Advantages and Disadvantages of Views

Restricting some users’ access to views has potential advantages over allowing users
direct access to the base tables. Unfortunately, views in SQL also have disadvan-
tages. In this section we briefly review the advantages and disadvantages of views in
SQL as summarized in Table 7.7.

TABLE 7.7 Summary of advantages/disadvantages of views in SQOL.

ADVANTAGES DISADVANTAGES
Data independence Update restriction
Currency Structure restriction
Improved security Performance

Reduced complexity
Convenience
Customization

Data integrity

Advantages

In the case of a DBMS running on a standalone PC, views are usually a convenience,
defined to simplify database requests. However, in a multi-user DBMS, views play
a central role in defining the structure of the database and enforcing security and
integrity. The major advantages of views are described next.

Data independence A view can present a consistent, unchanging picture of the
structure of the database, even if the underlying source tables are changed (for
example, if columns added or removed, relationships changed, tables split,

7.4 Views

restructured, or renamed). If columns are added or removed from a table, and
these columns are not required by the view, then the definition of the view need
not change. If an existing table is rearranged or split up, a view may be defined
so that users can continue to see the old table. In the case of splitting a table,
the old table can be recreated by defining a view from the join of the new tables,
provided that the split is done in such a way that the original table can be recon-
structed. We can ensure that this is possible by placing the primary key in both of
the new tables. Thus, if we originally had a Client table of the following form:

Client (clientNo, fName, IName, telNo, prefType, maxRent, eMail)

we could reorganize it into two new tables:

ClientDetails (clientNo, fName, IName, telNo, eMail)
ClientReqts (clientNo, prefType, maxRent)

Users and applications could still access the data using the old table structure,
which would be recreated by defining a view called Client as the natural join of
ClientDetails and ClientReqts, with clientNo as the join column:

CREATE VIEW Client

AS SELECT cd.clientNo, fName, IName, telNo, prefType, maxRent, eMail
FROM ClientDetails cd, ClientReqts cr
WHERE cd.clientNo = cr.clientNo;

Currency Changes to any of the base tables in the defining query are immediately
reflected in the view.

Improved security Each user can be given the privilege to access the database only
through a small set of views that contain the data appropriate for that user, thus
restricting and controlling each user’s access to the database.

Reduced complexity A view can simplify queries, by drawing data from several tables
into a single table, thereby transforming multi-table queries into single-table queries.

Convenience Views can provide greater convenience to users as users are pre-
sented with only that part of the database that they need to see. This also reduces
the complexity from the user’s point of view.

Customization Views provide a method to customize the appearance of the database,
so that the same underlying base tables can be seen by different users in different ways.

Data integrity If the WITH CHECK OPTION clause of the CREATE VIEW state-
ment is used, then SQL ensures that no row that fails to satisfy the WHERE clause
of the defining query is ever added to any of the underlying base table(s) through
the view, thereby ensuring the integrity of the view.

Disadvantages

Although views provide many significant benefits, there are also some disadvan-
tages with SQL views.

259

260 Chapter 7 SQL: Data Definition

TABLE 7.8
Data for view

StaffPropRent.

staffNo
SG37
SG14

Update restriction In Section 7.4.5 we showed that, in some cases, a view cannot be

updated.

Structure restriction The structure of a view is determined at the time of its crea-
tion. If the defining query was of the form SELECT * FROM . . ., then the * refers
to the columns of the base table present when the view is created. If columns are
subsequently added to the base table, then these columns will not appear in the
view, unless the view is dropped and recreated.

Performance There is a performance penalty to be paid when using a view. In
some cases, this will be negligible; in other cases, it may be more problematic. For
example, a view defined by a complex, multi-table query may take a long time to
process, as the view resolution must join the tables together every time the view is
accessed. View resolution requires additional computer resources. In the next sec-
tion we briefly discuss an alternative approach to maintaining views that attempts
to overcome this disadvantage.

7.4.8 View Materialization

In Section 7.4.3 we discussed one approach to handling queries based on a view,
in which the query is modified into a query on the underlying base tables. One
disadvantage with this approach is the time taken to perform the view resolution,
particularly if the view is accessed frequently. An alternative approach, called view
materialization, is to store the view as a temporary table in the database when the
view is first queried. Thereafter, queries based on the materialized view can be
much faster than recomputing the view each time. The speed difference may be
critical in applications where the query rate is high and the views are complex, so
it is not practical to recompute the view for every query.

Materialized views are useful in new applications such as data warehousing, repli-
cation servers, data visualization, and mobile systems. Integrity constraint checking
and query optimization can also benefit from materialized views. The difficulty with
this approach is maintaining the currency of the view while the base table(s) are
being updated. The process of updating a materialized view in response to changes
to the underlying data is called view maintenance. The basic aim of view mainte-
nance is to apply only those changes necessary to the view to keep it current. As an
indication of the issues involved, consider the following view:

CREATE VIEW StaffPropRent (staffNo)
AS SELECT DISTINCT staffNo
FROM PropertyForRent
WHERE branchNo = ‘B003” AND rent > 400;

with the data shown in Table 7.8. If we were to insert a row into the PropertyForRent
table with a rent = 400, then the view would be unchanged. If we were to insert the

row (‘PG24’, . .., 550, ‘CO40’, ‘SG19, ‘B003’) into the PropertyForRent table, then
the row should also appear within the materialized view. However, if we were to
insert the row (‘PG54 . . ., 450, ‘CO89’, ‘SG37’, ‘B003’) into the PropertyForRent

table, then no new row need be added to the materialized view, because there is a
row for SG37 already. Note that in these three cases the decision whether to insert

7.5 Transactions

the row into the materialized view can be made without access to the underlying
PropertyForRent table.

If we now wished to delete the new row (‘PG24, . . ., 550, ‘CO40’, ‘SG19’, ‘B003’)
from the PropertyForRent table, then the row should also be deleted from the materi-
alized view. However, if we wished to delete the new row (‘PG54 . . ., 450, ‘CO89’,

‘SG37’, ‘B003’) from the PropertyForRent table, then the row corresponding to SG37
should not be deleted from the materialized view, owing to the existence of the
underlying base row corresponding to property PG21. In these two cases, the decision
on whether to delete or retain the row in the materialized view requires access to the
underlying base table PropertyForRent. For a more complete discussion of materialized
views, the interested reader is referred to Gupta and Mumick, 1999.

7.5 Transactions

|

The ISO standard defines a transaction model based on two SQL statements:
COMMIT and ROLLBACK. Most, but not all, commercial implementations of
SQL conform to this model, which is based on IBM’s DB2 DBMS. A transaction is
a logical unit of work consisting of one or more SQL statements that is guaranteed
to be atomic with respect to recovery. The standard specifies that an SQL transac-
tion automatically begins with a transaction-initiating SQL statement executed by
a user or program (for example, SELECT, INSERT, UPDATE). Changes made by
a transaction are not visible to other concurrently executing transactions until the
transaction completes. A transaction can complete in one of four ways:

+ A COMMIT statement ends the transaction successfully, making the database
changes permanent. A new transaction starts after COMMIT with the next
transaction-initiating statement.

+ A ROLLBACK statement aborts the transaction, backing out any changes made
by the transaction. A new transaction starts after ROLLBACK with the next
transaction-initiating statement.

+ For programmatic SQL (see Appendix I), successful program termination ends the
final transaction successfully, even if a COMMIT statement has not been executed.

For programmatic SQL, abnormal program termination aborts the transaction.

SQL transactions cannot be nested (see Section 22.4). The SET TRANSACTION
statement allows the user to configure certain aspects of the transaction. The basic
format of the statement is:

SET TRANSACTION

[READ ONLY | READ WRITE] |

[ISOLATION LEVEL READ UNCOMMITTED | READ COMMITTED |
REPEATABLE READ | SERIALIZABLE]

The READ ONLY and READ WRITE qualifiers indicate whether the transac-
tion is read-only or involves both read and write operations. The default is
READ WRITE if neither qualifier is specified (unless the isolation level is READ
UNCOMMITTED). Perhaps confusingly, READ ONLY allows a transaction to
issue INSERT, UPDATE, and DELETE statements against temporary tables (but
only temporary tables).

261

262

Chapter 7 SQL: Data Definition

TABLE 7.9 Violations of senalizability permitted by isolation levels.

DIRTY NONREPEATABLE PHANTOM

ISOLATION LEVEL READ READ READ
READ UNCOMMITTED Y Y Y
READ COMMITTED N Y Y
REPEATABLE READ N N Y
SERIALIZABLE N N N

The isolation level indicates the degree of interaction that is allowed from other
transactions during the execution of the transaction. Table 7.9 shows the violations
of serializability allowed by each isolation level against the following three prevent-
able phenomena:

« Dirty read. A transaction reads data that has been written by another as yet uncom-
mitted transaction.

« Nonrepeatable read. A transaction rereads data that it has previously read, but
another committed transaction has modified or deleted the data in the interven-
ing period.

« Phantom read. A transaction executes a query that retrieves a set of rows satisfying
a certain search condition. When the transaction re-executes the query at a later
time, additional rows are returned that have been inserted by another committed
transaction in the intervening period.

Only the SERIALIZABLE isolation level is safe, that is, generates serializable sched-
ules. The remaining isolation levels require a mechanism to be provided by the
DBMS that can be used by the programmer to ensure serializability. Chapter 22
provides additional information on transactions and serializability.

7.5.1 Immediate and Deferred Integrity Constraints

In some situations, we do not want integrity constraints to be checked imme-
diately—that is, after every SQL statement has been executed—but instead at
transaction commit. A constraint may be defined as INITIALLY IMMEDIATE or
INITTIALLY DEFERRED, indicating which mode the constraint assumes at the start
of each transaction. In the former case, it is also possible to specify whether the
mode can be changed subsequently using the qualifier [NOT] DEFERRABLE. The
default mode is INITIALLY IMMEDIATE.

The SET CONSTRAINTS statement is used to set the mode for specified con-
straints for the current transaction. The format of this statement is:

SET CONSTRAINTS
{ALL | constraintName [, . . .]} {DEFERRED | IMMEDIATE}

1.6 Discretionary Access Control

|

In Section 2.4 we stated that a DBMS should provide a mechanism to ensure that
only authorized users can access the database. Modern DBMSs typically provide
one or both of the following authorization mechanisms:

7.6 Discretionary Access Control

« Discretionary access control. Each user is given appropriate access rights (or privi-
leges) on specific database objects. Typically users obtain certain privileges when
they create an object and can pass some or all of these privileges to other users
at their discretion. Although flexible, this type of authorization mechanism can
be circumvented by a devious unauthorized user tricking an authorized user into
revealing sensitive data.

« Mandatory access control. Each database object is assigned a certain classification level
(for example, Top Secret, Secret, Confidential, Unclassified) and each subject (for
example, users or programs) is given a designated clearance level. The classification
levels form a strict ordering (Top Secret > Secret > Confidential > Unclassified)
and a subject requires the necessary clearance to read or write a database object.
This type of multilevel security mechanism is important for certain government,
military, and corporate applications. The most commonly used mandatory access
control model is known as Bell-LaPadula (Bell and La Padula, 1974), which we
discuss further in Chapter 20.

SQL supports only discretionary access control through the GRANT and REVOKE
statements. The mechanism is based on the concepts of authorization identifiers,
ownership, and privileges, as we now discuss.

Authorization identifiers and ownership

An authorization identifier is a normal SQL identifier that is used to establish the
identity of a user. Each database user is assigned an authorization identifier by the
DBA. Usually, the identifier has an associated password, for obvious security reasons.
Every SQL statement that is executed by the DBMS is performed on behalf of a spe-
cific user. The authorization identifier is used to determine which database objects
the user may reference and what operations may be performed on those objects.

Each object that is created in SQL has an owner. The owner is identified by the
authorization identifier defined in the AUTHORIZATION clause of the schema to
which the object belongs (see Section 7.3.1). The owner is initially the only person
who may know of the existence of the object and, consequently, perform any opera-
tions on the object.

Privileges
Privileges are the actions that a user is permitted to carry out on a given base table
or view. The privileges defined by the ISO standard are:

+ SELECT—the privilege to retrieve data from a table;

+ INSERT—the privilege to insert new rows into a table;

« UPDATE—the privilege to modify rows of data in a table;

+ DELETE—the privilege to delete rows of data from a table;

+ REFERENCES—the privilege to reference columns of a named table in integrity
constraints;

« USAGE—the privilege to use domains, collations, character sets, and transla-
tions. We do not discuss collations, character sets, and translations in this book;
the interested reader is referred to Cannan and Otten, 1993.

The INSERT and UPDATE privileges can be restricted to specific columns of the
table, allowing changes to these columns but disallowing changes to any other

263

264

Chapter 7 SQL: Data Definition

column. Similarly, the REFERENCES privilege can be restricted to specific columns
of the table, allowing these columns to be referenced in constraints, such as check
constraints and foreign key constraints, when creating another table, but disallow-
ing others from being referenced.

When a user creates a table using the CREATE TABLE statement, he or she auto-
matically becomes the owner of the table and receives full privileges for the table.
Other users initially have no privileges on the newly created table. To give them
access to the table, the owner must explicitly grant them the necessary privileges
using the GRAN'T statement.

When a user creates a view with the CREATE VIEW statement, he or she auto-
matically becomes the owner of the view, but does not necessarily receive full privi-
leges on the view. To create the view, a user must have SELECT privilege on all the
tables that make up the view and REFERENCES privilege on the named columns of
the view. However, the view owner gets INSERT, UPDATE, and DELETE privileges
only if he or she holds these privileges for every table in the view.

7.6.1 Granting Privileges to Other Users (GRANT)

The GRANT statement is used to grant privileges on database objects to specific
users. Normally the GRANT statement is used by the owner of a table to give other
users access to the data. The format of the GRANT statement is:

GRANT {PrivilegeList | ALL PRIVILEGES}
ON ObjectName
TO {AuthorizationldList | PUBLIC}

[WITH GRANT OPTION]

PrivilegeList consists of one or more of the following privileges, separated by commas:

SELECT

DELETE

INSERT [(columnName [, . . .])]
UPDATE [(columnName [, . . .])]
REFERENCES [(columnName [, . . .])]
USAGE

For convenience, the GRANT statement allows the keyword ALL PRIVILEGES to
be used to grant all privileges to a user instead of having to specify the six privileges
individually. It also provides the keyword PUBLIC to allow access to be granted to
all present and future authorized users, not just to the users currently known to the
DBMS. ObjectName can be the name of a base table, view, domain, character set,
collation, or translation.

The WITH GRANT OPTION clause allows the user(s) in Authorization/dlist to pass
the privileges they have been given for the named object on to other users. If these
users pass a privilege on specifying WITH GRANT OPTION, the users receiving
the privilege may in turn grant it to still other users. If this keyword is not specified,
the receiving user(s) will not be able to pass the privileges on to other users. In this
way, the owner of the object maintains very tight control over who has permission
to use the object and what forms of access are allowed.

7.6 Discretionary Access Control

EXAMPLE 7.7 GRANT all privileges
Give the user with authorization identifier Manager all privileges on the Staff table.

GRANT ALL PRIVILEGES
ON Staff
TO Manager WITH GRANT OPTION;

The user identified as Manager can now retrieve rows from the Staff table, and also
insert, update, and delete data from this table. Manager can also reference the Staff table,
and all the Staff columns in any table that he or she creates subsequently. We also speci-
fied the keyword WITH GRANT OPTION, so that Manager can pass these privileges
on to other users.

EXAMPLE 7.8 GRANT specific privileges
Give users Personnel and Director the privileges SELECT and UPDATE on column salary of the Staff table.

GRANT SELECT, UPDATE (salary)
ON Staff
TO Personnel, Director;

We have omitted the keyword WITH GRANT OPTION, so that users Personnel and
Director cannot pass either of these privileges on to other users.

EXAMPLE 7.9 GRANT specific privileges to PUBLIC
Give all users the privilege SELECT on the Branch table.

GRANT SELECT
ON Branch
TO PUBLIC;

The use of the keyword PUBLIC means that all users (now and in the future) are
able to retrieve all the data in the Branch table. Note that it does not make sense to use
WITH GRANT OPTION in this case: as every user has access to the table, there is no
need to pass the privilege on to other users.

7.6.2 Revoking Privileges from Users (REVOKE)

The REVOKE statement is used to take away privileges that were granted with the
GRANT statement. A REVOKE statement can take away all or some of the privi-
leges that were previously granted to a user. The format of the statement is:

REVOKE [GRANT OPTION FOR] {PrivilegeList | ALL PRIVILEGES}
ON ObjectName
FROM {AuthorizationldList | PUBLIC} [RESTRICT | CASCADE]

The keyword ALL PRIVILEGES refers to all the privileges granted to a user by
the user revoking the privileges. The optional GRANT OPTION FOR clause allows
privileges passed on via the WITH GRANT OPTION of the GRANT statement to
be revoked separately from the privileges themselves.

265

266 Chapter 7 SQL: Data Definition

User
A

(5) REVOKE INSERT | (1) GRANT INSERT

ON Staff ON Staff
CASCADE WITH GRANT OPTION
User
B
(2) GRANT INSERT
ON Staff
WITH GRANT OPTION
User User
c < E
(4) GRANT INSERT (3) GRANT INSERT
ON Staff ON Staff
WITH GRANT OPTION
User
D

Figure 7.1 Effects of REVOKE.

The RESTRICT and CASCADE qualifiers operate exactly as in the DROP
TABLE statement (see Section 7.3.3). Because privileges are required to create cer-
tain objects, revoking a privilege can remove the authority that allowed the object to
be created (such an object is said to be abandoned). The REVOKE statement fails if
it results in an abandoned object, such as a view, unless the CASCADE keyword has
been specified. If CASCADE is specified, an appropriate DROP statement is issued
for any abandoned views, domains, constraints, or assertions.

The privileges that were granted to this user by other users are not affected by
this REVOKE statement. Therefore, if another user has granted the user the privi-
lege being revoked, the other user’s grant still allows the user to access the table.
For example, in Figure 7.1 User A grants User B INSERT privilege on the Staff
table WITH GRANT OPTION (step 1). User B passes this privilege on to User C
(step 2). Subsequently, User C gets the same privilege from User E (step 3). User C
then passes the privilege on to User D (step 4). When User A revokes the INSERT
privilege from User B (step 5), the privilege cannot be revoked from User C,
because User C has also received the privilege from User E. If User E had not given
User C this privilege, the revoke would have cascaded to User C and User D.

EXAMPLE 7.10 REVOKE specific privileges from PUBLIC
Revoke the privilege SELECT on the Branch table from all users.

REVOKE SELECT
ON Branch
FROM PUBLIC;

EXAMPLE 7.11 REVOKE specific privileges from named user

Revoke all privileges you have given to Director on the Staff table.

This is equivalent to REVOKE SELECT . . ., as this was the only privilege that has
been given to Director.

Chapter Summary 267

REVOKE ALL PRIVILEGES
ON Staff
FROM Director;

Chapter Summary

The ISO standard provides eight base data types: boolean, character, bit, exact numeric, approximate numeric,
datetime, interval, and character/binary large objects.

The SOL DDL statements allow database objects to be defined. The CREATE and DROP SCHEMA statements
allow schemas to be created and destroyed; the CREATE, ALTER, and DROP TABLE statements allow tables to
be created, modified, and destroyed; the CREATE and DROP INDEX statements allow indexes to be created
and destroyed.

The ISO SQL standard provides clauses in the CREATE and ALTER TABLE statements to define integrity
constraints that handle required data, domain constraints, entity integrity, referential integrity, and general
constraints. Required data can be specified using NOT NULL. Domain constraints can be specified using
the CHECK clause or by defining domains using the CREATE DOMAIN statement. Primary keys should

be defined using the PRIMARY KEY clause and alternate keys using the combination of NOT NULL and
UNIQUE. Foreign keys should be defined using the FOREIGN KEY clause and update and delete rules using
the subclauses ON UPDATE and ON DELETE. General constraints can be defined using the CHECK and
UNIQUE clauses. General constraints can also be created using the CREATE ASSERTION statement.

A view is a virtual table representing a subset of columns and/or rows and/or column expressions from one
or more base tables or views. A view is created using the CREATE VIEW statement by specifying a defining
query. [t may not necessarily be a physically stored table, but may be recreated each time it is referenced.

Views can be used to simplify the structure of the database and make queries easier to write. They can also be
used to protect certain columns and/or rows from unauthorized access. Not all views are updatable.

View resolution merges the query on a view with the definition of the view producing a query on the underly-

ing base table(s). This process is performed each time the DBMS has to process a query on a view. An alternative
approach, called view materialization, stores the view as a temporary table in the database when the view is first
queried. Thereafter, queries based on the materialized view can be much faster than recomputing the view each time.
One disadvantage with materialized views is maintaining the currency of the temporary table.

The COMMIT statement signals successful completion of a transaction and all changes to the database are made
permanent. The ROLLBACK statement signals that the transaction should be aborted and all changes to the
database are undone.

SQL access control is built around the concepts of authorization identifiers, ownership, and privileges.
Authorization identifiers are assigned to database users by the DBA and identify a user. Each object

268 Chapter 7 SQL: Data Definition

that is created in SQL has an owner. The owner can pass privileges on to other users using the
GRANT statement and can revoke the privileges passed on using the REVOKE statement. The privileges
that can be passed on are USAGE, SELECT, DELETE, INSERT, UPDATE, and REFERENCES; INSERT,
UPDATE, and REFERENCES can be restricted to specific columns. A user can allow a receiving user

to pass privileges on using the WITH GRANT OPTION clause and can revoke this privilege using the
GRANT OPTION FOR clause.

Review Questions

7.1 What are the main SQL DDL statements?

7.2 Discuss the functionality and importance of the Integrity Enhancement Feature (IFF).
7.3 What are the privileges commonly granted to database users?

7.4 Discuss the advantages and disadvantages of views.

7.5 Discuss the ways by which a transaction can complete.

7.6 What restrictions are necessary to ensure that a view is updatable?

7.7 What is a materialized view and what are the advantages of a maintaining a materialized view rather than using the
view resolution process?

7.8 Describe the difference between discretionary and mandatory access control. What type of control mechanism
does SQL support?

7.9 Describe how the access control mechanisms of SQL work.

Exercises

Answer the following questions using the relational schema from the Exercises at the end of Chapter 4:
7.10 Create the Hotel table using the integrity enhancement features of SOL.

7.11 Now create the Room, Booking, and Guest tables using the integrity enhancement features of SQL with the
following constraints:
(a) type must be one of Single, Double, or Family.
(b) price must be between £10 and £100.
(c) roomNo must be between | and 100.
(d) dateFrom and dateTo must be greater than today's date.
(e) The same room cannot be double-booked.
() The same guest cannot have overlapping bookings.

7.12 Create a separate table with the same structure as the Booking table to hold archive records. Using the INSERT
statement, copy the records from the Booking table to the archive table relating to bookings before | January
2013. Delete all bookings before | January 2013 from the Booking table.

7.13 Assume that all hotels are loaded. Create a view containing the cheapest hotels in the world.
7.14 Create a view containing the guests who are from BRICS countries.
7.15 Give the users Manager and Director full access to these views, with the privilege to pass the access on to other users.

7.16 Give the user Accounts SELECT access to these views. Now revoke the access from this user.

Exercises 269

7.17 Consider the following view defined on the Hotel schema:

CREATE VIEW HotelBookingCount (hotelNo, bookingCount)

AS SELECT h.hotelNo, COUNT(*)
FROM Hotel h, Room r, Booking b
WHERE h.hotelNo = r.hotelNo AND r.roomNo = b.roomNo
GROUP BY h.hotelNo;

For each of the following queries, state whether the query is valid, and for the valid ones, show how each of the
queries would be mapped on to a query on the underlying base tables.

(2) SELECT *

FROM HotelBookingCount;
(b) SELECT hotelNo

FROM HotelBookingCount

WHERE hotelNo =’"H001’;
(c) SELECT MIN(bookingCount)

FROM HotelBookingCount;
(d) SELECT COUNT(*)

FROM HotelBookingCount;
(e) SELECT hotelNo

FROM HotelBookingCount

WHERE bookingCount > 1000;
() SELECT hotelNo

FROM HotelBookingCount

ORDER BY bookingCount;

7.19 Assume that we also have a table for suppliers:
Supplier (supplierNo. partNo, price)
and a view SupplierParts, which contains the distinct part numbers that are supplied by at least one supplier:

CREATE VIEW SupplierParts (partNo)

AS SELECT DISTINCT partNo
FROM Supplier s, Part p
WHERE s.partNo = p.partNo;

Discuss how you would maintain this as a materialized view and under what circumstances you would be able to
maintain the view without having to access the underlying base tables Part and Supplier.

7.20 Analyze three different DBMSs of your choice. Identify objects that are available in the system catalog. Compare
and contrast the object organization, name scheme, and the ways used to retrieve object description.

7.21 Create the DreamHome rental database schema defined in Section 4.2.6 and insert the tuples shown in Figure 4.3.

7.22 Use the view you created in exercise 7.13 to discuss how you would improve the performance of the SQL
command.

7.23 You are contracted to investigate queries with degraded performance to improve them. Based on the schemas
created in previous exercises, discuss the criteria to decide for or against indexing.

Case Study 2

For Exercises 7.24 to 7.40, use the Projects schema defined in the Exercises at the end of Chapter 5.

7.24 Create the Projects schema using the integrity enhancement features of SQOL with the following constraints:
(a) sex must be one of the single characters ‘™M’ or 'F'.
(b) position must be one of ‘Manager', ‘Team Leader’, ‘Analyst’, or ‘Software Developer'.
(c) hoursWorked must be an integer value between 0 and 40.

7.25 Create a view consisting of projects managed by female managers and ordered by project number.

270 Chapter 7 SQL: Data Definition

7.26 Create a view consisting of the attributes empNo, fName, IName, projName, and hoursWorked attributes.

7.27 Consider the following view defined on the Projects schema:

CREATE VIEW EmpProject(empNo, projNo, totalHours)
AS SELECT w.empNo, w.projNo, SUM(hoursWorked)
FROM Employee e, Project p, WorksOn w

WHERE e.empNo = w.empNo AND p.projNo = w.projNo
GROUP BY w.empNo, w.projNo;

() SELECT*
FROM EmpProject;

(b) SELECT projNo
FROM EmpProject
WHERE projNo = ‘SCCS’;

(c) SELECT COUNT (projNo)
FROM EmpProject
WHERE empNo = ‘E1’;

(d) SELECT empNo, totalHours
FROM EmpProject
GROUP BY empNo;

General

7.28 Consider the following table:
Part (partNo, contract, partCost)

which represents the cost negotiated under each contract for a part (a part may have a different price under
each contract). Now consider the following view ExpensiveParts, which contains the distinct part numbers for
parts that cost more than £1000:

CREATE VIEW ExpensiveParts (partNo)
AS SELECT DISTINCT partNo
FROM Part
WHERE partCost > 1000;

Discuss how you would maintain this as a materialized view and under what circumstances you would be able to
maintain the view without having to access the underlying base table Part.

CHAPTER

Advanced SQL

Chapter Objectives
In this chapter you will learn:

* How to use the SQL programming language.

* How to use SQL cursors.

* How to create stored procedures.

* How to create triggers.

* How to use triggers to enforce integrity constraints.
» The advantages and disadvantages of triggers.

* How to use recursive queries.

The previous two chapters have focused on the main language of relational
DBMSs, namely SQL. In Chapter 6 we examined the data manipulation language
(DML) statements of SQL: SELECT, INSERT, UPDATE, and DELETE. In
Chapter 7 we examined the main data definition language (DDL) statements
of SQL, such as the CREATE and ALTER TABLE statements and the CREATE
VIEW statement. In this chapter we discuss some other parts of the SQL standard,
namely:

« the SQL programming language (SQL/PSM);
« SQL cursors;

- stored procedures;

- triggers;

* recursive queries.

Looking ahead, in Chapter 9 we discuss the features that have been added to the
SQL specification to support object-oriented data management, and in Chapter 30
we examine the features that have been added to the specification to support XML
(eXtensible Markup Language), called SQL/XML:2011. Finally, in Appendix I we
discuss how SQL can be embedded in high-level programming languages. The
examples in this chapter use the DreamHome rental database shown in Figure 4.3.

271

272 | Chapter 8 Advanced SQL

8.1 ThesoL Programming Language

[

The initial two versions of the SQL language had no programming constructs; that
1s, it was not computationally complete. To overcome this problem, the more recent ver-
sions of the SQL standard allow SQL to be embedded in high-level programming
languages to help develop more complex database applications (see Appendix I).
However, this approach produces an impedance mismatch, because we are mixing
different programming paradigms:

« SQL is a declarative language that handles rows of data, whereas a high-level
language such as C is a procedural language that can handle only one row of
data at a time.

+ SQL and 3GLs use different models to represent data. For example, SQL provides
the built-in data types Date and Interval, which are not available in traditional pro-
gramming languages. Thus, it is necessary for the application program to convert
between the two representations, which is inefficient both in programming effort
and in the use of runtime resources. It has been estimated that as much as 30%
of programming effort and code space is expended on this type of conversion
(Atkinson et al., 1983). Furthermore, since we are using two different type systems,
it is not possible to automatically type check the application as a whole.

It is argued that the solution to these problems is not to replace relational lan-
guages by record-level object-oriented languages, but to introduce set-level facilities
into programming languages (Date, 1995). However, SQL is now a full program-
ming language and we discuss some of the programming constructs in this section.
The extensions are known as SQL/PSM (Persistent Stored Modules); however, to
make the discussions more concrete, we base the presentation mainly on the Oracle
programming language, PL/SQL.

PL/SQL (Procedural Language/SQL) is Oracle’s procedural extension to SQL.
There are two versions of PL/SQL: one is part of the Oracle server, and the other is
a separate engine embedded in a number of Oracle tools. They are very similar to
each other and have the same programming constructs, syntax, and logic mecha-
nisms, although PL/SQL for Oracle tools has some extensions to suit the require-
ments of the particular tool (for example, PL/SQL has extensions for Oracle Forms).

PL/SQL has concepts similar to modern programming languages, such as variable
and constant declarations, control structures, exception handling, and modulari-
zation. PL/SQL is a block-structured language: blocks can be entirely separate or
nested within one another. The basic units that constitute a PL/SQL program are
procedures, functions, and anonymous (unnamed) blocks. As illustrated in Figure 8.1,
a PL/SQL block has up to three parts:

« an optional declaration part, in which variables, constants, cursors, and excep-
tions are defined and possibly initialized;

- a mandatory executable part, in which the variables are manipulated;
- an optional exception part, to handle any exceptions raised during execution.

8.1.1 Declarations

Variables and constant variables must be declared before they can be referenced in
other statements, including other declarative statements. Examples of declarations are:

8.1 The SQL Programming Language 273

Figure 8.1
[DECLARE Ersiane General structure
of a PL/SQL
--- declarations] block.
BEGIN Mandatory
--- executable statements
[EXCEPTION Optional
--- exception handlers]
END; Mandatory
vStaffNo VARCHAR2(5);

vRent NUMBER(6, 2) NOT NULL : = 600;
MAX_PROPERTIES CONSTANT NUMBER := 100;

Note that it is possible to declare a variable as NOT NULL, although in this
case an initial value must be assigned to the variable. It is also possible to
declare a variable to be of the same type as a column in a specified table or
another variable using the %TYPE attribute. For example, to declare that the
vStaffNo variable is the same type as the staffNo column of the Staff table, we
could write:

vStaffNo Staff.staffNo%TYPE;
vStaffNol vStaffNo%TYPE;

Similarly, we can declare a variable to be of the same type as an entire row of a table
or view using the %ZROWTYPE attribute. In this case, the fields in the record take
their names and data types from the columns in the table or view. For example, to
declare a vStaffRec variable to be a row from the Staff table, we could write:

vStaffRec Staff% ROWTYPE;
Note that %TYPE and %ROWTYPE are not standard SQL.

8.1.2 Assignments

In the executable part of a PL/SQL block, variables can be assigned in two ways:
using the normal assignment statement (:=) or as the result of an SQL SELECT or
FETCH statement. For example:

vStaffNo := ‘SG14’;
vRent := 500;
SELECT COUNT(*) INTO x FROM PropertyForRent WHERE staffNo = vStaffNo;

In the third case, the variable x is set to the result of the SELECT statement (in this
case, equal to the number of properties managed by staff member SG14).
Note that in the SQL standard, an assignment uses the SET keyword at the start

> ¢

of the line with the “=" symbol, instead of the “:=". For example:

SET vStaffNo = ‘SG14’

274 Chapter 8 Advanced SQL

8.1.3 Control Statements

PL/SQL supports the usual conditional, iterative, and sequential flow-of-control

mechanisms.

Conditional IF statement The IF statement has the following form:

IF (condition) THEN
<SQL statement list>

[ELSIF (condition) THEN <SQL statement list>]

[ELSE <SQL statement list>]
END IF;

Note that the SQL standard specifies ELSEIF instead of ELSIF.

For example:

IF (position = ‘Manager’) THEN
salary := salary*1.05;

ELSE
salary := salary*1.03;

END IF;

Conditional CASE statement The CASE statement allows the selection of an
execution path based on a set of alternatives and has the following form:

CASE (operand)

[WHEN (whenOperandList) | WHEN (searchCondition)

THEN <SQL statement list>]
[ELSE <SQL statement list>]
END CASE;

For example:

CASE lowercase(x)
WHEN ‘@’ THEN x := 1;
WHEN ‘b’ THEN x := 2;
y:=0;
WHEN ‘default’ THEN x := 3;
END CASE;

UPDATE Staff
SET salary = CASE
WHEN position = ‘Manager’
THEN salary * 1.05
ELSE
THEN salary * 1.02
END;

Iteration statement (LOOP) The LOOP statement has the following form:

[labelName:]
LOOP
<SQL statement list>

EXIT [labelName] [WHEN (condition)]

END LOOP [labelName];

Note that the SQL standard specifies LEAVE instead of EXIT WHEN (condition).

8.1 The SQL Programming Language

For example:

x:=1;
myLoop:
LOOP

X :=x+1;

IF (x > 3) THEN

EXIT myLoop; --- exit loop immediately

END LOOP myLoop;
--- control resumes here

y:i=2;

In this example, the loop is terminated when x becomes greater than 3 and control
resumes immediately after the END LOOP keyword.

Iteration statement (WHILE and REPEAT) The WHILE and REPEAT state-
ments have the following form (note that PL/SQL has no equivalent to the
REPEAT loop specified in the SQL standard):

PL/SQL SQL
WHILE (condition) LOOP WHILE (condition) DO
<SQL statement list> <SQL statement list>
END LOOP [labelName]; END WHILE [labelName];
REPEAT

<SQL statement list>
UNTIL (condition)
END REPEAT [labelName];

Iteration statement (FOR) The FOR statement has the following form:

PL/SQL SQL
FOR indexVariable FOR indexVariable
IN lowerBound .. upperBound LOOP AS querySpecification DO
<SQL statement list> <SQL statement list>
END LOOP [labelName]; END FOR [labelName];

The following is an example of a FOR loop in PL/SQL.:

DECLARE
numberOfStaff NUMBER;
SELECT COUNT(*¥*) INTO numberOfStaff FROM PropertyForRent
WHERE staffNo = ‘SG14’;myLoop1:
FOR iStaff IN 1 .. numberOfStaff LOOP
END LOOP
myLoopl;

275

276

Chapter 8 Advanced SQL

The following is an example of a FOR loop in standard SQL.:

myLoopl:
FOR iStaff AS SELECT COUNT(*) FROM PropertyForRent
WHERE staffNo = ‘SG14’ DO

END FOR myLoopl;

We present additional examples using some of these structures shortly.

8.1.4 Exceptions in PL/SQL

An exception is an identifier in PL/SQL raised during the execution of a block
that terminates its main body of actions. A block always terminates when an excep-
tion is raised, although the exception handler can perform some final actions.
An exception can be raised automatically by Oracle—for example, the exception
NO_DATA_FOUND is raised whenever no rows are retrieved from the database
in a SELECT statement. It is also possible for an exception to be raised explicitly
using the RAISE statement. To handle raised exceptions, separate routines called
exception handlers are specified.

As mentioned earlier, a user-defined exception is defined in the declarative part
of a PL/SQL block. In the executable part, a check is made for the exception condi-
tion, and, if found, the exception is raised. The exception handler itself is defined
at the end of the PL/SQL block. An example of exception handling is given in
Figure 8.2. This example also illustrates the use of the Oracle-supplied package

DECLARE
vpCount NUMBER;
vStaffNo PropertyForRent.staffNo%TYPE := ‘SG14’;
-- define an exception for the enterprise constraint that prevents a member of staff
-- managing more than 100 properties
e_too_many_properties EXCEPTION;
PRAGMA EXCEPTION_INIT (e_too_many_properties, -20000);
BEGIN
SELECT COUNT(*) INTO vpCount
FROM PropertyForRent
WHERE staffNo = vStaffNo;
IF vpCount =100
-- raise an exception for the general constraint
RAISE e_too_many_properties;
END IF;
UPDATE PropertyForRent SET staffNo = vStaffNo WHERE propertyNo = ‘PG4’;
EXCEPTION
-- handle the exception for the general constraint
WHEN e_too_many_properties THEN
dbms_output.put_line(‘Member of staff ’ || staffNo || ‘already managing 100 properties’);
END;

Figure 8.2 Example of exception handling in PL/SQL.

8.1 The SQL Programming Language

DBMS_OUTPUT, which allows output from PL/SQL blocks and subprograms.
The procedure put_line outputs information to a buffer in the SGA (an area of
shared memory that is used to store data and control information for one Oracle

instance), which can be displayed by calling the procedure get_line or by setting
SERVEROUTPUT ON in SQL*Plus.

Condition handling

The SQL Persistent Stored Modules (SQL/PSM) language includes condition han-
dling to handle exceptions and completion conditions. Condition handling works
by first defining a handler by specifying its type, the exception and completion
conditions it can resolve, and the action it takes to do so (an SQL procedure state-
ment). Condition handling also provides the ability to explicitly signal exception
and completion conditions, using the SIGNAL/RESIGNAL statement.

A handler for an associated exception or completion condition can be declared
using the DECLARE . . . HANDLER statement:

DECLARE {CONTINUE | EXIT | UNDO} HANDLER
FOR SQLSTATE {sqlstateValue | conditionName | SQLEXCEPTION |
SQLWARNING | NOT FOUND} handlerAction;

A condition name and an optional corresponding SQLSTATE value can be
declared using:

DECLARE conditionName CONDITION
[FOR SQLSTATE sqlstateValue]

and an exception condition can be signaled or resignaled using:
SIGNAL sqlstateValue; or RESIGNAL sqlstateValue;

When a compound statement containing a handler declaration is executed, a han-
dler is created for the associated conditions. A handler is activated when it is the most
appropriate handler for the condition that has been raised by the SQL statement. If
the handler has specified CONTINUE, then on activation it will execute the handler
action before returning control to the compound statement. If the handler type is
EXIT, then after executing the handler action, the handler leaves the compound
statement. If the handler type is UNDO, then the handler rolls back all changes
made within the compound statement, executes the associated handler action, and
then returns control to the compound statement. If the handler does not complete
with a successful completion condition, then an implicit resignal is executed, which
determines whether there is another handler that can resolve the condition.

8.1.5 Cursors in PL/SQL

A SELECT statement can be used if the query returns one and only one row. To han-
dle a query that can return an arbitrary number of rows (that is, zero, one, or more
rows) PL/SQL uses cursors to allow the rows of a query result to be accessed one
at a time. In effect, the cursor acts as a pointer to a particular row of the query
result. The cursor can be advanced by 1 to access the next row. A cursor must be
declared and opened before it can be used, and it must be closed to deactivate it after
it is no longer required. Once the cursor has been opened, the rows of the query

277

278

Chapter 8 Advanced SQL

result can be retrieved one at a time using a FETCH statement, as opposed to
a SELECT statement. (In Appendix I we see that SQL can also be embedded in
high-level programming languages and that cursors are also used for handling
queries that can return an arbitrary number of rows.)

EXAMPLE 8.1 Use of cursors

Figure 8.3 illustrates the use of a cursor to determine the properties managed by staff
member SG14. In this case, the query can return an arbitrary number of rows, so a cur-
sor must be used. The important points to note in this example are:

+ In the DECLARE section, the cursor propertyCursor is defined.

« In the statements section, the cursor is first opened. Among others, this has the effect
of parsing the SELECT statement specified in the CURSOR declaration, identify-
ing the rows that satisfy the search criteria (called the active set), and positioning the
pointer just before the first row in the active set. Note, if the query returns no rows,
PL/SQL does not raise an exception when the cursor is open.

+ The code then loops over each row in the active set and retrieves the current row val-
ues into output variables using the FETCH INTO statement. Each FETCH statement
also advances the pointer to the next row of the active set.

+ The code checkswhether the cursor did not contain a row (propertyCursor %bNOTFOUND)
and exits the loop if no row was found (EXIT WHEN). Otherwise, it displays the prop-
erty details using the DBMS_OUTPUT package and goes around the loop again.

+ The cursor is closed on completion of the fetches.

« Finally, the exception block displays any error conditions encountered.

As well as %2NOTFOUND, which evaluates to true if the most recent fetch does not
return a row, there are some other cursor attributes that are useful:

+ %FOUND: Evaluates to true if the most recent fetch returns a row (complement of
%NOTFOUND).

+ %ISOPEN: Evaluates to true if the cursor is open.

+ %ROWCOUNT: Evaluates to the total number of rows returned so far.

Passing parameters to cursors PL/SQL allows cursors to be parameterized, so
that the same cursor definition can be reused with different criteria. For example,
we could change the cursor defined in the previous example to:

CURSOR propertyCursor (vStaffNo VARCHAR2) IS
SELECT propertyNo, street, city, postcode
FROM PropertyForRent
WHERE staffNo = vStaffNo
ORDER BY propertyNo;

and we could open the cursor using the following example statements:
vStaffNo1 PropertyForRent.staffNo% TYPE := ‘SG14’;
OPEN propertyCursor(‘SG14’);

OPEN propertyCursor(‘SA9’);
OPEN propertyCursor(vStaffNo1);

8.1 The SQL Programming Language

DECLARE
vPropertyNo PropertyForRent.propertyNo%TYPE;
vStreet PropertyForRent.street%TYPE;
vCity PropertyForRent.city%TYPE;
vPostcode PropertyForRent.postcode%TYPE;

CURSOR propertyCursor IS
SELECT propertyNo, street, city, postcode
FROM PropertyForRent
WHERE staffNo = ‘SG14’
ORDER by propertyNo;
BEGIN
-- Open the cursor to start of selection, then loop to fetch each row of the result table
OPEN propertyCursor;
LOOP

-- Fetch next row of the result table
FETCH propertyCursor
INTO vPropertyNo, vStreet, vCity, vPostcode;
EXIT WHEN propertyCursor% NOTFOUND;

-- Display data
dbms_output.put_line(‘Property number:’ || vPropertyNo);
dbms_output.put_line(‘Street: > || vStreet);
dbms_output.put_line(‘City: > || vCity);
IF postcode IS NOT NULL THEN
dbms_output.put_line(‘Post Code: > || vPostcode);
BISSE!
dbms_output.put_line(‘Post Code: NULL’);
END IF;
END LOOP;

IF propertyCursor%ISOPEN THEN CLOSE propertyCursor END IF;

-- Error condition - print out error
EXCEPTION
WHEN OTHERS THEN
dbms_output.put_line(‘Error detected’);
IF propertyCursor%ISOPEN THEN CLOSE propertyCursor; END IF;
END;

Figure 8.3 Using cursors in PL/SQL to process a multirow query.

Updating rows through a cursor It is possible to update and delete a row after it
has been fetched through a cursor. In this case, to ensure that rows are not changed
between declaring the cursor, opening it, and fetching the rows in the active set,
the FOR UPDATE clause is added to the cursor declaration. This has the effect of
locking the rows of the active set to prevent any update conflict when the cursor is
opened (locking and update conflicts are discussed in Chapter 22).

279

280 Chapter 8 Advanced SQL

For example, we may want to reassign the properties that SG14 manages to
SG37. The cursor would now be declared as:

CURSOR propertyCursor IS
SELECT propertyNo, street, city, postcode
FROM PropertyForRent
WHERE staffNo = ‘SG14’
ORDER BY propertyNo
FOR UPDATE NOWAIT;

By default, if the Oracle server cannot acquire the locks on the rows in the active
set in a SELECT FOR UPDATE cursor, it waits indefinitely. To prevent this, the
optional NOWAIT keyword can be specified and a test can be made to see if
the locking has been successful. When looping over the rows in the active set, the
WHERE CURRENT OF clause is added to the SQL UPDATE or DELETE state-
ment to indicate that the update is to be applied to the current row of the active set.
For example:

UPDATE PropertyForRent
SET staffNo = ‘SG37’
WHERE CURRENT OF propertyCursor;

COMMIT;

Cursors in the SQL standard Cursor handling statements defined in the SQL
standard are slightly different from that described previously. The interested
reader is referred to Appendix I.

8.2 Subprograms, Stored Procedures, Functions,
and Packages

Subprograms are named PL/SQL blocks that can take parameters and be
invoked. PL/SQL has two types of subprogram called (stored) procedures and
functions. Procedures and functions can take a set of parameters given to them
by the calling program and perform a set of actions. Both can modify and return
data passed to them as a parameter. The difference between a procedure and a
function is that a function will always return a single value to the caller, whereas
a procedure does not. Usually, procedures are used unless only one return value
is needed.

Procedures and functions are very similar to those found in most high-level
programming languages, and have the same advantages: they provide modularity
and extensibility, they promote reusability and maintainability, and they aid
abstraction. A parameter has a specified name and data type but can also be
designated as:

« IN — parameter is used as an input value only.
« OUT - parameter is used as an output value only.

« IN OUT - parameter is used as both an input and an output value.

8.3 Triggers

For example, we could change the anonymous PL/SQL block given in Figure 8.3
into a procedure by adding the following lines at the start:

CREATE OR REPLACE PROCEDURE PropertiesForStaff
(IN vStaffNo VARCHAR2)
AS ...

The procedure could then be executed in SQL*Plus as:

SQL> SET SERVEROUTPUT ON;
SQL> EXECUTE PropertiesForStaff(‘SG14’);

We discuss functions and procedures in more detail in Chapter 9.

Packages (PL/SQL)

A package is a collection of procedures, functions, variables, and SQL statements
that are grouped together and stored as a single program unit. A package has two
parts: a specification and a body. A package’s specification declares all public con-
structs of the package, and the body defines all constructs (public and private) of
the package, and so implements the specification. In this way, packages provide a
torm of encapsulation. Oracle performs the following steps when a procedure or
package is created:

« It compiles the procedure or package.

« It stores the compiled code in memory.

« It stores the procedure or package in the database.

For the previous example, we could create a package specification as follows:

CREATE OR REPLACE PACKAGE StaffPropertiesPackage AS
procedure PropertiesForStaff(vStaffNo VARCHAR2);
END StaffPropertiesPackage;

and we could create the package body (that is, the implementation of the package) as:

CREATE OR REPLACE PACKAGE BODY StaffPropertiesPackage
AS

END StaffPropertiesPackage;

To reference the items declared within a package specification, we use the dot
notation. For example, we could call the PropertiesForStaff procedure as follows:

StaffPropertiesPackage.PropertiesForStaff(‘'SG14’);

8.3 Triggers

-

A trigger defines an action that the database should take when some event occurs
in the application. A trigger may be used to enforce some referential integrity con-
straints, to enforce complex constraints, or to audit changes to data. The general
format of a trigger in SQL is:

CREATE TRIGGER TriggerName
BEFORE | AFTER | INSTEAD OF
INSERT | DELETE | UPDATE [OF TriggerColumnList]

281

282

Chapter 8 Advanced SQL

ON TableName

[REFERENCING {OLD | NEW} AS {OldName | NewName}
[FOR EACH {ROW | STATEMENT}]

[WHEN Condition]

<trigger action>

This is not the complete definition, but it is sufficient to demonstrate the basic con-
cept. The code within a trigger, called the trigger body or trigger action, is made up
of an SQL block. Triggers are based on the Event—Condition—-Action (ECA) model:

« The event (or events) that trigger the rule, which can be an INSERT, UPDATE, or
DELETE statement on a specified table (or possibly view). In Oracle, it can also be:

— a CREATE, ALTER, or DROP statement on any schema object;
— a database startup or instance shutdown, or a user logon or logoff;
— a specific error message or any error message.
It is also possible to specify whether the trigger should fire before the event or
after the event.
+ The condition that determines whether the action should be executed. The condition
is optional but, if specified, the action will be executed only if the condition is true.
« The action to be taken. This block contains the SQL statements and code to be

executed when a triggering statement is issued and the trigger condition evalu-
ates to true.

There are two types of trigger: row-level triggers (FOR EACH ROW) that execute
for each row of the table that is affected by the triggering event, and statement-level
triggers (FOR EACH STATEMENT) that execute only once even if multiple rows
are affected by the triggering event. SQL also supports INSTEAD OF triggers,
which provide a transparent way of modifying views that cannot be modified directly
through SQL DML statements (INSERT, UPDATE, and DELETE). These triggers
are called INSTEAD OF triggers because, unlike other types of trigger, the trigger
is fired instead of executing the original SQL statement. Triggers can also activate
themselves one after the other. This can happen when the trigger action makes a
change to the database that has the effect of causing another event that has a trigger
associated with it to fire.

EXAMPLE 8.2 AFTER Row-level trigger

Create an AFTER row-level trigger to keep an audit trail of all rows inserted into the Staff table.

CREATE TRIGGER StaffAfterinsert
AFTER INSERT ON staff
REFERENCING NEW AS new
FOR EACH ROW
BEGIN
INSERT INTO StaffAudit
VALUES (:new.staffNo, :new.fName, :new.IName, :new.position,
:new.sex, :new.DOB, :new.salary, :new.branchNo);
END:;
Note that the SQL standard uses NEW ROW instead of NEW and OLD ROW instead of
OLD.

8.3 Triggers | 283

EXAMPLE 8.3 Using a BEFORE trigger
DreamHome has a rule that prevents a member of staft from managing more than 100 /ﬁ%

properties at the same time. We could create the trigger shown in Figure 8.4 to enforce A4
this constraint. This trigger is invoked before a row is inserted into the PropertyForRent

CREATE TRIGGER StaffNotHandlingTooMuch
BEFORE INSERT ON PropertyForRent
REFERENCING NEW AS newrow
FOR EACH ROW
DECLARE
vpCount NUMBER;
BEGIN
SELECT COUNT(*) INTO vpCount
FROM PropertyForRent
WHERE staffNo = :newrow.staffNo;
IF vpCount = 100
raise_application_error(-20000, (‘Member’ || :newrow.staffNo || ‘already managing 100 properties’);
END IF;
END;

Figure 8.4 Trigger to enforce the constraint that a member of staff cannot manage more than
100 properties at any one time.

table or an existing row is updated. If the member of staff currently manages 100 prop-
erties, the system displays a message and aborts the transaction. The following points
should be noted:

« The BEFORE keyword indicates that the trigger should be executed before an insert
is applied to the PropertyForRent table.

« The FOR EACH ROW keyword indicates that this is a row-level trigger, which
executes for each row of the PropertyForRent table that is updated in the statement.

EXAMPLE 8.4 Using triggers to enforce referential integrity

By default, Oracle enforces the referential actions ON DELETE NO ACTION and ON
UPDATE NO ACTION on the named foreign keys (see Section 7.2.4). It also allows
the additional clause ON DELETE CASCADE to be specified to allow deletions from
the parent table to cascade to the child table. However, it does not support the ON
UPDATE CASCADE action, or the SET DEFAULT and SET NULL actions. If any of
these actions are required, they will have to be implemented as triggers or stored pro-
cedures, or within the application code. For example, from Example 7.1 the foreign key
staffNo in the PropertyForRent table should have the action ON UPDATE CASCADE. This
action can be implemented using the triggers shown in Figure 8.5.

Trigger | (PropertyForRent_Check_Before)

The trigger in Figure 8.5(a) is fired whenever the staffNo column in the PropertyForRent
table is updated. The trigger checks before the update takes place whether the new value
specified exists in the Staff table. If an Invalid_Staff exception is raised, the trigger issues
an error message and prevents the change from occurring.

284 Chapter 8 Advanced SQL

-- Before the staffNo column is updated in the PropertyForRent table, fire this trigger

-- to verify that the new foreign key value is present in the Staff table.

CREATE TRIGGER PropertyForRent_Check_Before before trigger
BEFORE UPDATE OF staffNo ON PropertyForRent
FOR EACH ROW WHEN (new.staffNo IS NOT NULL)

DECLARE
dummy CHAR(5);
invalid_staff EXCEPTION;
valid_staff EXCEPTION;
mutating_table EXCEPTION;

PRAGMA EXCEPTION_INIT (mutating_table, -4091);

-- Use cursor to verify that parent key value exists.

-- Use FOR UPDATE OF to lock parent key’s row so that it cannot be deleted

-- by another transaction until this transaction completes.

CURSOR update_cursor (sn CHAR(5)) IS
SELECT staffNo FROM Staff
WHERE staffNo = sn
FOR UPDATE OF staffNo;

BEGIN

condition for
trigger to fire

row-level trigger

OPEN update_cursor (:new.staffNo);
FETCH update_cursor INTO dummy;
-- Verify parent key. Raise exceptions as appropriate.
IF update_cursor% NOTFOUND THEN
RAISE invalid_staff;

[BISSE
RAISE valid_staff;
END IF; ‘
Invalid staffNo
CLOSE update_cursor; specified
EXCEPTION

WHEN invalid_staff THEN
CLOSE update_cursor;
raise_application_error(-20000, ‘Invalid Staff Number’ || :new.staffNo);
WHEN valid_staff THEN
CLOSE update_cursor;
-- A mutating table is a table that is currently being modified by an INSERT, UPDATE,
-- or DELETE statement, or one that might need to be updated by the effects of a declarative
-- DELETE CASCADE referential integrity constraint.
-- This error would raise an exception, but in this case the exception is OK, so trap it,
-- but don’t do anything.
WHEN mutating_table THEN
NULL;
END;

Figure 8.5(a) Oracle triggers to enforce ON UPDATE CASCADE on the foreign key staffNo in
the PropertyForRent table when the primary key staffNo is updated in the Staff table:
(a) trigger for the PropertyForRent table.

8.3 Triggers

Changes to support triggers on the Staff table

The three triggers shown in Figure 8.5(b) are fired whenever the staffNo column in
the Staff table is updated. Before the definition of the triggers, a sequence number
updateSequence is created, along with a public variable updateSeq (which is accessible
to the three triggers through the seqPackage package). In addition, the PropertyForRent
table is modified to add a column called updateld, which is used to flag whether a row
has been updated, to prevent it from being updated more than once during the cascade
operation.

-- Create a sequence number and a public variable UPDATESEQ.

CREATE SEQUENCE updatesequence INCREMENT BY 1 MAXVALUE 500 CYCLE;

CREATE PACKAGE seqpackage AS
updateseqg NUMBER;

END seqpackage;

CREATE or REPLACE PACKAGE BODY seqpackage AS END seqpackage;

Package to hold
sequence number

-- Add a new attribute to the PropertyForRent table to flag changed rows.
. <4—— add extra column to
ALTER TABLE PropertyForRent ADD updateid NUMBER; PropertyForRent
table
-- Before updating the Staff table using this statement trigger, generate a new
-- sequence number and assign it to the public variable UPDATESEQ.
CREATE TRIGGER Cascade_StaffNo_Updatel

BEFORE UPDATE OF staffNo ON Staff < S Elleii B e

before trigger

DECLARE (default)
dummy NUMBER;
BEGIN
SELECT updatesequence. NEXTVAL
INTO dummy FROM dual; < S MY SEUENEE

number for update
seqpackage.updateseq := dummy;

END;

-- Create a row after-trigger that cascades the update to the PropertyForRent table.

-- Only cascade the update if the child row has not already been updated by the trigger.

CREATE TRIGGER Cascade_StaffNo_Update2
AFTER UPDATE OF staffNo ON Staff }

FOR EACH ROW < row-level after trigger

BEGIN
UPDATE PropertyForRent SET staffNo = :new.staffNo,

updateid = seqpackage.updateseq
WHERE staffNo = :old.staffNo AND updateid IS NULL; \

END; update PropertyForRent
table and set updated
-- Create a final statement after-trigger to reset the updateid flags flag for these rows
CREATE TRIGGER Cascade_StaffNo_Update3
AFTER UPDATE OF staffNo ON Staff

BEGIN

statement-level after trigger;
UPDATE PropertyForRent SET updateid = NULL resets flags for updated rows
WHERE updateid = seqpackage.updateseq;

END;

Figure 8.5(b) Triggers for the Staff table.

285

286

Chapter 8 Advanced SQL

Trigger 2 (Cascade_StaffNo_Updatel)

This (statement-level) trigger fires before the update to the staffNo column in the Staff
table to set a new sequence number for the update.

Trigger 3 (Cascade_StaffNo_Update2)

This (row-level) trigger fires to update all rows in the PropertyForRent table that have the
old staffNo value (:old.staffNo) to the new value (:new.staffNo), and to flag the row as
having been updated.

Trigger 4 (Cascade_StaffNo_Update3)

The final (statement-level) trigger fires after the update to reset the flagged rows back
to unflagged.

Dropping triggers
Triggers can be dropped using the DROP TRIGGER <TriggerName> statement.

TRIGGER Privilege

In order to create a trigger on a table, the user either has to be the owner of the table
(in which case the user will inherit the TRIGGER privilege) or the user will need to have
been granted the TRIGGER privilege on the table (see Section 7.6).

Advantages and disadvantages of triggers

There are a number of advantages and disadvantages with database triggers. Advantages
of triggers include:

« Elimination of redundant code. Instead of placing a copy of the functionality of the trig-
ger in every client application that requires it, the trigger is stored only once in the
database.

« Simplifying modifications. Changing a trigger requires changing it in one place only;
all the applications automatically use the updated trigger. Thus, they are only coded
once, tested once, and then centrally enforced for all the applications accessing the
database. The triggers are usually controlled, or at least audited, by a skilled DBA.
The result is that the triggers can be implemented efficiently.

« Increased security. Storing the triggers in the database gives them all the benefits of
security provided automatically by the DBMS.

« Improved integrity. Triggers can be extremely useful for implementing some types of
integrity constraints, as we have demonstrated earlier. Storing such triggers in the
database means that integrity constraints can be enforced consistently by the DBMS
across all applications.

« Improved processing power. Triggers add processing power to the DBMS and to the
database as a whole.

 Good fit with the client-server architecture. The central activation and processing of trig-
gers fits the client-server architecture well (see Chapter 3). A single request from
a client can result in the automatic performing of a whole sequence of checks and
subsequent operations by the database server. In this way, performance is potentially
improved as data and operations are not transferred across the network between the
client and the server.

Triggers also have disadvantages, which include:

« Performance overhead. The management and execution of triggers have a performance
overhead that have to be balanced against the advantages cited previously.

8.4 Recursion

« Cascading effects. The action of one trigger can cause another trigger to be fired, and
so on, in a cascading manner. Not only can this cause a significant change to the
database, but it can also be hard to foresee this effect when designing the trigger.

« Cannot be scheduled. Triggers cannot be scheduled; they occur when the event that they
are based on happens.

« Less portable. Although now covered by the SQL standard, most DBMSs implement
their own dialect for triggers, which affects portability.

8.4 Recursion

.,

Atomicity of data means that repeating groups are not allowed in the relational model.
As a result, it is extremely difficult to handle recursive queries, that is, queries about
relationships that arelation has with itself (directly or indirectly). To illustrate the new
operation, we use the example simplified Staffrelation shown in Figure 9.16, in the next
chapter, which stores staff numbers and the corresponding manager’s staff number.
To find all the managers of all staff, we can use the following recursive query in
SQL:2008:

WITH RECURSIVE
AllManagers (staffNo, managerStaffNo) AS
(SELECT staffNo, managerStaffNo
FROM Staff
UNION
SELECT in.staffNo, out.managerStaffNo
FROM AlManagers in, Staff out
WHERE in.managerStaffNo = out.staffNo);
SELECT * FROM AllManagers
ORDER BY staffNo, managerStaffNo;

This query creates a result table AllManagers with two columns staffNo and
managerStaffNo containing all the managers of all staff. The UNION operation is
performed by taking the union of all rows produced by the inner block until no new
rows are generated. Note, if we had specified UNION ALL, any duplicate values
would remain in the result table.

In some situations, an application may require the data to be inserted into the
result table in a certain order. The recursion statement allows the specification of
two orderings:

+ depth-first, where each ‘parent’ or ‘containing’ item appears in the result before
the items that it contains, as well as before its ‘siblings’ (items with the same par-
ent or container);

+ breadth-first, where items follow their ‘siblings” without following the siblings’

children.

For example, at the end of the WITH RECURSIVE statement we could add the
following clause:

SEARCH BREADTH FIRST BY staffNo, managerStaffNo
SET orderColumn

The SET clause identifies a new column name (orderColumn), which is used by SQL
to order the result into the required breadth-first traversal.

287

288 Chapter 8 Advanced SQL

If the data can be recursive, not just the data structure, an infinite loop can
occur unless the cycle can be detected. The recursive statement has a CYCLE
clause that instructs SQL to record a specified value to indicate that a new row
has already been added to the result table. Whenever a new row is found, SQL
checks that the row has not been added previously by determining whether the
row has been marked with the specified value. If it has, then SQL assumes a cycle
has been encountered and stops searching for further result rows. An example of
the CYCLE clause is:

CYCLE staffNo, managerStaffNo
SET cycleMark TO Y’ DEFAULT ‘N’
USING cyclePath

cycleMark and cyclePath are user-defined column names for SQL to use internally.
cyclePath is an ARRAY with cardinality sufficiently large to accommodate the num-
ber of rows in the result and whose element type is a row type with a column for
each column in the cycle column list (staffNo and managerStaffNo in our example).
Rows satisfying the query are cached in cyclePath. When a row satisfying the query
is found for the first time (which can be determined by its absence from cyclePath),
the value of the cycleMark column is set to ‘N’. When the same row is found again
(which can be determined by its presence in cyclePath), the cycleMark column of the
existing row in the result table is modified to the cycleMark value of Y’ to indicate
that the row starts a cycle.

Chapter Summary

The initial versions of the SQL language had no programming constructs; that is, it was not computationally com-
plete. However, with the more recent versions of the standard, SQL is now a full programming language with
extensions known as SQL/PSM (Persistent Stored Modules).

SQL/PSM supports the declaration of variables and has assignment statements, flow of control statements (IF-THEN-
ELSE-END IF; LOOP-EXIT WHEN-END LOOP; FOR-END LOOP; WHILE-END LOOP), and exceptions.

A SELECT statement can be used if the query returns one and only one row. To handle a query that can return
an arbitrary number of rows (that is, zero, one, or more rows), SQL uses cursors to allow the rows of a query
result to be accessed one at a time. In effect, the cursor acts as a pointer to a particular row of the query resutt.
The cursor can be advanced by one to access the next row. A cursor must be declared and opened before it can
be used, and it must be closed to deactivate it after it is no longer required. Once the cursor has been opened,
the rows of the query result can be retrieved one at a time using a FETCH statement, as opposed to a SELECT
statement.

Subprograms are named PL/SQL blocks that can take parameters and be invoked. PL/SQL has two types of
subprograms called (stored) procedures and functions. Procedures and functions can take a set of param-
eters given to them by the calling program and perform a set of actions. Both can modify and return data passed
to them as a parameter. The difference between a procedure and a function is that a function will always return
a single value to the caller, whereas a procedure will not. Usually, procedures are used unless only one retum
value is needed.

Exercises 289

+ A trigger defines an action that the database should take when some event occurs in the application. A trig-
ger may be used to enforce some referential integrity constraints, to enforce complex integrity constraints, or to
audit changes to data. Triggers are based on the Event-Condition-Action (ECA) model: the event (or events) that
trigger the rule, the condition that determines whether the action should be executed, and the action to be taken.

+ Advantages of triggers include: eliminates redundant code, simplifies modifications, increases security, improves
integrity, improves processing power, and fits well with the client-server architecture. Disadvantages of triggers
include: performance overhead, cascading effects, inability to be scheduled, and less portable.

Review Questions

8.1 Advanced SQL deals with SQL/PSM and PL/SQL. What led to the introduction of SQL/PSM?

8.2 Describe the general structure of a PL/SQL block.

8.3 Describe the control statements in PL/SQL. Give examples to illustrate your answers.

8.4 Describe how the PL/SQL statements differ from the SQL standard. Give examples to illustrate your answers.
8.5 What are SOL cursors?! Give an example of the use of an SQL cursor.

8.6 How is a procedure different from a function?

8.7 Discuss the differences between BEFORE, AFTER, and INSTEAD OF triggers. Give examples to illustrate your
answers.

8.8 Rows can be changed after they have been fetched through a cursor. How can this event be stopped?

8.9 Discuss the advantages and disadvantages of database triggers.

Exercises

For the following questions, use the Hotel schema from the Exercises at the end of Chapter 4.

8.10 List all hotels in the capital cities of BRICS countries. .

8.11 Create a database trigger for the following situations:
(@) The price of all double rooms must be greater than £100.
(b) The price of double rooms must be greater than the price of the highest single room.
(c) A booking cannot be for a hotel room that is already booked for any of the specified dates.
(d) A guest cannot make two bookings with overlapping dates.
(e) Maintain an audit table with the names and addresses of all guests who make bookings for hotels in London
(do not store duplicate guest details).

8.12 Create an INSTEAD OF database trigger that will allow data to be inserted into the following view:

CREATE VIEW LondonHotelRoom AS
SELECT h.hotelNo, hoteIName, city, roomNo, type, price
FROM Hotel h, Room r
WHERE h.hotelNo = r.hotelNo AND city = ‘London’

8.13 Not all modern DBMSs are embedded with SQL/PSM features. Investigate a DBMS of your choice to determine
if it is SQL/PSM compliant. Discuss situations in the DreamHome project that require trigger creation.

CHAPTER

Object-Relational DBMSs

Chapter Objectives

In this chapter you will learn:

The requirements for advanced database applications.

Why relational DBMSs currently are not well suited to supporting advanced database
applications.

The problems associated with storing objects in a relational database.

How the relational model has been extended to support advanced database applications.

The object-oriented features in the latest SQL standard, SQL:201 I, including:
— row types,

— user-defined types and user-defined routines;

— polymorphism;

— inheritance;

— reference types and object identity;

— collection types (ARRAYs, MULTISETs, SETs, and LISTs);

— extensions to the SOL language to make it computationally complete;

— triggers;

— support for large objects: Binary Large Objects (BLOBs) and Character Large Objects
(CLOBs);

— recursion.

Some object-oriented extensions to Oracle.

Object orientation is an approach to software construction that has shown consid-
erable promise for solving some of the classic problems of software development.
The underlying concept behind object technology is that all software should be
constructed out of standard, reusable components wherever possible. Traditionally,
software engineering and database management have existed as separate disci-
plines. Database technology has concentrated on the static aspects of information
storage, while software engineering has modeled the dynamic aspects of software.

291

292

Chapter 9 Object-Relational DBMSs

With the arrival of the third generation of database management systems, namely
Object-Relational Database Management Systems (ORDBMSs) and Object-
Oriented Database Management Systems (OODBMSs), the two disciplines have
been combined to allow the concurrent modeling of both data and the processes
acting upon the data.

However, there has been some dispute regarding this next generation of
DBMSs. The success of relational systems in the past three decades is evident,
and the traditionalists believe that it is sufficient to extend the relational model
with additional (object-oriented) capabilities. Others believe that an underlying
relational model is inadequate to handle complex applications, such as computer-
aided design, computer-aided software engineering, and geographic information
systems. In this chapter we consider the ORDBMS, focusing on the extensions that
have been made to SQL. Integrating object-oriented concepts into the relational
systems is considered a more evolutionary approach to supporting advanced database
applications. In Chapters 27 and 28 we discuss OODBMSs, which are considered a
revolutionary approach to integrating object-oriented concepts with database systems.
To put the discussion of such systems into content, in this chapter we first consider
the characteristics of advanced database applications and why relational DBMSs
may not be suitable for handling such applications. Readers unfamiliar with object-
oriented concepts are referred to Appendix K.

Structure of this Chapter In Section 9.1 we examine the requirements
for the advanced types of database applications that are becoming more com-
monplace, and in Section 9.2 we discuss why traditional RDBMSs are not well
suited to supporting these new applications. In Section 9.3 we examine the
problems associated with storing objects in a relational database.

In Section 9.4 we examine the background of the ORDBMS and the types
of application that they may be suited to. In Section 9.5 we provide a detailed
review of the main features of the SQL:2011 standard released in December
2011. Finally, in Section 9.6 we examine some of the object-oriented extensions
that have been added to Oracle, a commercial ORDBMS.

To benefit fully from this chapter, the reader needs to be familiar with object-
oriented concepts presented in Appendix K. The examples in this chapter are
once again drawn from the DreamHome case study documented in Section 11.4
and Appendix A.

9.1 Advanced Database Applications

|

The computer industry has seen significant changes in the last decade. In database
systems, we have seen the widespread acceptance of RDBMSs for traditional busi-
ness applications such as order processing, inventory control, banking, and airline
reservations. However, existing RDBMSs have proven inadequate for applications

9.1 Advanced Database Applications 293

whose needs are quite different from those of traditional business database applica-
tions. These applications include:

- computer-aided design (CAD);

+ computer-aided manufacturing (CAM);

- computer-aided software engineering (CASE);

+ network management systems;

« office information systems (OIS) and multimedia systems;
- digital publishing;

« geographic information systems (GIS);

« interactive and dynamic Web sites.

Computer-aided design (CAD)

A CAD database stores data relating to mechanical and electrical design covering,
for example, buildings, aircraft, and integrated circuit chips. Designs of this type
have some common characteristics:

+ Design data is characterized by a large number of types, each with a small num-
ber of instances. Conventional databases are typically the opposite. For example,
the DreamHome database consists of only a dozen or so relations, although rela-
tions such as PropertyForRent, Client, and Viewing may contain thousands of tuples.

+ Designs may be very large, perhaps consisting of millions of parts, often with
many interdependent subsystem designs.

+ The design is not static but evolves through time. When a design change occurs,
its implications must be propagated through all design representations. The
dynamic nature of design may mean that some actions cannot be foreseen at the
beginning.

+ Updates are far-reaching because of topological or functional relationships, toler-
ances, and so on. One change is likely to affect a large number of design objects.

+ Often, many design alternatives are being considered for each component, and
the correct version for each part must be maintained. This involves some form of
version control and configuration management.

+ There may be hundreds of staff members involved with the design, and they may
work in parallel on multiple versions of a large design. Even so, the end-product
must be consistent and coordinated. This is sometimes referred to as cooperative
engineering.

Computer-aided manufacturing (CAM)

A CAM database stores similar data to a CAD system, in addition to data relating
to discrete production (such as cars on an assembly line) and continuous produc-
tion (such as chemical synthesis). For example, in chemical manufacturing there are
applications that monitor information about the state of the system, such as reactor
vessel temperatures, flow rates, and yields. There are also applications that control
various physical processes, such as opening valves, applying more heat to reactor
vessels, and increasing the flow of cooling systems. These applications are often
organized in a hierarchy, with a top-level application monitoring the entire factory

294

Chapter 9 Object-Relational DBMSs

and lower-level applications monitoring individual manufacturing processes. These
applications must respond in real time and be capable of adjusting processes to
maintain optimum performance within tight tolerances. The applications use a com-
bination of standard algorithms and custom rules to respond to different conditions.
Operators may modify these rules occasionally to optimize performance based on
complex historical data that the system has to maintain. In this example, the system
has to maintain large volumes of data that is hierarchical in nature and maintain
complex relationships between the data. It must also be able to rapidly navigate
through the data to review and respond to changes.

Computer-aided software engineering (CASE)

A CASE database stores data relating to the stages of the software development
lifecycle: planning, requirements collection and analysis, design, implementation,
testing, maintenance, and documentation. As with CAD, designs may be extremely
large, and cooperative engineering is the norm. For example, software configura-
tion management tools allow concurrent sharing of project design, code, and docu-
mentation. They also track the dependencies between these components and assist
with change management. Project management tools facilitate the coordination of
various project management activities, such as the scheduling of potentially highly
complex interdependent tasks, cost estimation, and progress monitoring.

Network management systems

Network management systems coordinate the delivery of communication services
across a computer network. These systems perform such tasks as network path
management, problem management, and network planning. As with the chemical
manufacturing example we discussed earlier, these systems also handle complex
data and require real-time performance and continuous operation. For example, a
telephone call might involve a chain of network switching devices that route a mes-
sage from sender to receiver, such as:

Node Link Node Link Node Link Node

where each Node represents a port on a network device and each Link represents
a slice of bandwidth reserved for that connection. However, a node may participate
in several different connections and any database that is created has to manage a
complex graph of relationships. To route connections, diagnose problems, and
balance loadings, the network management systems have to be capable of moving
through this complex graph in real time.

Office information systems (OIS) and multimedia systems

An OIS database stores data relating to the computer control of information in a
business, including electronic mail, documents, invoices, and so on. To provide bet-
ter support for this area, we need to handle a wider range of data types other than
names, addresses, dates, and money. Modern systems now handle free-form text,
photographs, diagrams, and audio and video sequences. For example, a multime-
dia document may handle text, photographs, spreadsheets, and voice commentary.
The documents may have a specific structure imposed on them, perhaps described

9.1 Advanced Database Applications

using a markup language such as SGML (Standardized Generalized Markup
Language), HI'ML (HyperText Markup Language), or XML (extended Markup
Language), as we discuss in Chapter 30.

Documents may be shared among many users using systems such as electronic
mail and bulletin-boards based on Internet technology." Again, such applications
need to store data that has a much richer structure than tuples consisting of num-
bers and text strings. There is also an increasing need to capture handwritten notes
using electronic devices. Although many notes can be transcribed into ASCII text
using handwriting analysis techniques, most such data cannot. In addition to words,
handwritten data can include sketches, diagrams, and so on.

In the DreamHome case study, we may find the following requirements for han-
dling multimedia:

« Image data. A client may query an image database of properties for rent. Some
queries may simply use a textual description to identify images of desirable
properties. In other cases, it may be useful for the client to query using graphi-
cal images of the features that may be found in desirable properties (such as bay
windows, internal cornicing, or roof gardens).

Video data. A client may query a video database of properties for rent. Again, some
queries may simply use a textual description to identify the video images of desir-
able properties. In other cases, it may be useful for the client to query using video
features of the desired properties (such as views of the sea or surrounding hills).

Audio data. A client may query an audio database that describes the features of prop-
erties for rent. Once again, some queries may simply use a textual description to
identify the desired property. In other cases it may be useful for the client to use
audio features of the desired properties (such as the noise level from nearby traffic).
* Handwritten data. A member of staff may create notes while carrying out inspec-
tions of properties for rent. At a later date, he or she may wish to query such data
to find all notes made about a flat in Novar Drive with dry rot.

Digital publishing

The publishing industry is likely to undergo profound changes in business practices
over the next decade. It is now possible to store books, journals, papers, and articles
electronically and deliver them over high-speed networks to consumers. As with office
information systems, digital publishing is being extended to handle multimedia
documents consisting of text, audio, image, and video data and animation. In some
cases, the amount of information available to be put online is enormous, in the order
of petabytes (10" bytes), which would make them the largest databases that a DBMS
has ever had to manage.

Geographic information systems (GIS)

A GIS database stores various types of spatial and temporal information, such as
that used in land management and underwater exploration. Much of the data in
these systems is derived from survey and satellite photographs and tends to be

'A potentially damaging criticism of database systems, as noted by a number of observers, is that the
largest “database” in the world—the World Wide Web—was initially developed with little or no use
of database technology. We discuss the integration of the Web and DBMSs in Chapter 29.

295

296

Chapter 9 Object-Relational DBMSs

very large. Searches may involve identifying features based, for example, on shape,
color, or texture, using advanced pattern-recognition techniques.

For example, EOS (Earth Observing System) is a collection of satellites launched
by NASA in the 1990s to gather information that will support scientists concerned
with long-term trends regarding the earth’s atmosphere, oceans, and land. It is
anticipated that these satellites will return over one-third of a petabyte of informa-
tion per year. This data will be integrated with other data sources and will be stored
in EOSDIS (EOS Data and Information System). EOSDIS will supply the informa-
tion needs of both scientists and nonscientists. For example, students will be able to
access EOSDIS to see a simulation of world weather patterns. The immense size of
this database and the need to support thousands of users with very heavy volumes
of information requests will provide many challenges for DBMSs.

Interactive and dynamic Web sites

Consider a Web site that has an online catalog for selling clothes. The Web site
maintains a set of preferences for previous visitors to the site and allows a visitor to:

+ browse through thumbnail images of the items in the catalog and select one to
obtain a full-size image with supporting details;

« search for items that match a user-defined set of criteria;

- obtain a 3D rendering of any item of clothing based on a customized specification
(for example, color, size, fabric);

- modify the rendering to account for movement, illumination, backdrop, occa-
sion, and so on;

- select accessories to go with the outfit, from items presented in a sidebar;
- select a voiceover commentary giving additional details of the item;
- view a running total of the bill, with appropriate discounts;

« conclude the purchase through a secure online transaction.

The requirements for this type of application are not that different from some of
the previously mentioned advanced applications: there is a need to handle multi-
media content (text, audio, image, video data, and animation) and to modify the
display interactively based on user preferences and user selections. As well as
handling complex data, the site also has the added complexity of providing 3D
rendering. It is argued that in such a situation the database is not just presenting
information to the visitor but is actively engaged in selling, dynamically providing
customized information and atmosphere to the visitor (King, 1997).

As we discuss in Chapters 29 and 30, the Web now provides a relatively new
paradigm for data management, and languages such as XML hold significant
promise, particularly for the e-Commerce market. According to the Forrester
Research Group and eMarketer, U.S. online retail sales for 2011 were approximately
US$225 billion and projected to grow to US$362 billion by 2016 with computer
and consumer electronics accounting for 22% of the market and apparel and acces-
sories for about 20% of the market. The Centre for Retail Research estimated that
Europe would exceed the U.S. in 2012 with online retail sales of US$232 billion.
The global business-to-business (B2B) market is expected to be even greater than
the business-to-consumer (B2C) market, and B2B revenues are expected to surpass

9.2 Weaknesses of RDBMSs

B2C revenues many times over in the coming years. Companies now can reach
almost 2.5 billion online consumers worldwide (35% of the world’s population) via
their global web presence. As the use of the Internet increases and the technology
becomes more sophisticated, then we will see Web sites and business-to-business
transactions handle much more complex and interrelated data.

Other advanced database applications include:

« Scientific and medical applications, which may store complex data representing
systems such as molecular models for synthetic chemical compounds and genetic
material.

« Expert systems, which may store knowledge and rule bases for Al applications.

.

Other applications with complex and interrelated objects and procedural data.

9.2 Weaknesses of RDBMSs

-

In Chapter 4 we discussed how the relational model has a strong theoretical founda-
tion, based on first-order predicate logic. This theory supported the development
of SQL, a declarative language that has now become the standard language for
defining and manipulating relational databases. Other strengths of the relational
model are its simplicity, its suitability for Online Transaction Processing (OLTP),
and its support for data independence. However, the relational data model, and
relational DBMSs in particular, are not without their disadvantages. Table 9.1
lists some of the more significant weaknesses often cited by the proponents of the
object-oriented approach. We discuss these weaknesses in this section and leave
readers to judge for themselves the applicability of these weaknesses.

Poor representation of “real-world” entities

The process of normalization generally leads to the creation of relations that do
not correspond to entities in the “real-world.” The fragmentation of a “real-world”
entity into many relations, with a physical representation that reflects this struc-
ture, is inefficient leading to many joins during query processing. As we will see in
Chapter 23, the join is one of the most costly operations to perform.

TABLE 9.1 Summary of weaknesses of relational DBMSs.
WEAKNESS

Poor representation of “real-world” entities
Semantic overloading

Poor support for integrity and enterprise constraints
Homogeneous data structure

Limited operations

Difficulty handling recursive queries

Impedance mismatch

Other problems with RDBMSs associated with concurrency, schema changes, and poor
navigational access

297

298

Chapter 9 Object-Relational DBMSs

Semantic overloading

The relational model has only one construct for representing data and relation-
ships between data: the relation. For example, to represent a many-to-many (*:%)
relationship between two entities A and B, we create three relations, one to repre-
sent each of the entities A and B and one to represent the relationship. There is
no mechanism to distinguish between entities and relationships, or to distinguish
between difterent kinds of relationship that exist between entities. For example, a
1:* relationship might be Has, Owns, Manages, and so on. If such distinctions could
be made, then it might be possible to build the semantics into the operations. It is
said that the relational model is semantically overloaded.

There have been many attempts to overcome this problem using semantic data
models, that is, models that represent more of the meaning of data. The interested
reader is referred to the survey papers by Hull and King (1987) and Peckham and
Maryanski (1988). However, the relational model is not completely without seman-
tic features. For example, it has domains and keys (see Section 4.2), and functional,
multi-valued, and join dependencies (see Chapters 14 and 15).

Poor support for integrity and general constraints

Integrity refers to the validity and consistency of stored data. Integrity is usually
expressed in terms of constraints, which are consistency rules that the database is not
permitted to violate. In Section 4.3 we introduced the concepts of entity and refer-
ential integrity, and in Section 4.2.1 we introduced domains, which are also a type
of constraint. Unfortunately, many commercial systems do not fully support these
constraints and it is necessary to build them into the applications. This, of course,
is dangerous and can lead to duplication of effort and, worse still, inconsistencies.
Furthermore, there is no support for general constraints in the relational model,
which again means that they have to be built into the DBMS or the application.

As you have seen in Chapters 6 and 7, the SQL standard helps partially resolve
this claimed deficiency by allowing some types of constraints to be specified as part
of the Data Definition Language (DDL).

Homogeneous data structure

The relational model assumes both horizontal and vertical homogeneity. Horizontal
homogeneity means that each tuple of a relation must be composed of the same
attributes. Vertical homogeneity means that the values in a particular column of a
relation must all come from the same domain. Additionally, the intersection of a
row and column must be an atomic value. This fixed structure is too restrictive for
many “real-world” objects that have a complex structure, and it leads to unnatural
joins, which are inefficient as mentioned previously. In defense of the relational
data model, it could equally be argued that its symmetric structure is one of the
model’s strengths.

Among the classic examples of complex data and interrelated relationships is a
parts explosion in which we wish to represent some object, such as an aircraft, as
being composed of parts and composite parts, which in turn are composed of other
parts and composite parts, and so on. This weakness has led to research in complex
object or nonfirst normal form (NF?) database systems, addressed in the papers by,

9.2 Weaknesses of RDBMSs 299

for example, Jaeschke and Schek (1982) and Bancilhon and Khoshafian (1989). In
the latter paper, objects are defined recursively as follows:

(1) Every atomic value (such as integer, float, string) is an object.

(2) Ifa), a,, . .., a, are distinct attribute names and o,, o,, . . . , 0, are objects, then
[a;:0,, @105, . . . , &,:0,] is a tuple object.
(3) If oy, 0o, . . ., 0, are objects, then S = {o,, 0y, . . ., 0,} is a set object.

In this model, the following would be valid objects:

Atomic objects B003, John, Glasgow
Set {SG37, SG14, SG5}
Tuple [branchNo: B003, street: 163 Main St, city: Glasgow]

Hierarchical tuple [branchNo: BOO03, street: 163 Main St, city: Glasgow, staff:
{SG37, SG14, SG5}]

Set of tuples {[branchNo: B003, street: 163 Main St, city: Glasgow],
[branchNo: B005, street: 22 Deer Rd, city: London]}
Nested relation {[branchNo: B003, street: 163 Main St, city: Glasgow, staff:

{SG37, SG14, SG5}],
[branchNo: B005, street: 22 Deer Rd, city: London, staff:
{SL.21,SL41}]}

Many RDBMSs now allow the storage of binary large objects (BLOBs). A BLOB
is a data value that contains binary information representing an image, a digitized
video or audio sequence, a procedure, or any large unstructured object. The DBMS
does not have any knowledge concerning the content of the BLOB or its internal
structure. This prevents the DBMS from performing queries and operations on
inherently rich and structured data types. Typically, the database does not manage
this information directly, but simply contains a reference to a file. The use of BLOBs
is not an elegant solution and storing this information in external files denies it
many of the protections naturally afforded by the DBMS. More importantly, BLOBs
cannot contain other BLOBs, so they cannot take the form of composite objects.
Further, BLOBs generally ignore the behavioral aspects of objects. For example, a
picture can be stored as a BLOB in some relational DBMSs. However, the picture
can only be stored and displayed. It is not possible to manipulate the internal struc-
ture of the picture, or to display or manipulate parts of the picture. An example of
the use of BLOBs is given in Figure 19.12.

Limited operations

The relational model has only a fixed set of operations, such as set and tuple-oriented
operations, operations that are provided in the SQL specification. However, SQL
does not allow new operations to be specified. Again, this is too restrictive to model
the behavior of many real-world objects. For example, a GIS application typically
uses points, lines, line groups, and polygons, and needs operations for distance,
intersection, and containment.

Difficulty handling recursive queries

Atomicity of data means that repeating groups are not allowed in the relational
model. As a result, it is extremely difficult to handle recursive queries, that is,

300

Chapter 9 Object-Relational DBMSs

staffNo [managerstaffNo staffNo [managerstaffNo
S005 S004 S005 S004
5004 S003 5004 5003
5003 5002 S003 5002
5002 S001 S002 S001
S001 NULL S001 NULL
5005 S003
@) S005 | S002
S005 S001
S004 5002
S004 S001
S003 S001

(b)

Figure 9.1 (a) Simplified Staff relation; (b) transitive closure of Staff relation.

queries about relationships that a relation has with itself (directly or indirectly).
Consider the simplified Staff relation shown in Figure 9.1(a), which stores staff
numbers and the corresponding manager’s staff number. How do we find all the
managers who directly or indirectly manage staff member S005? To find the first
two levels of the hierarchy, we use:

SELECT managerStaffNo

FROM Staff

WHERE staffNo = ‘S005’
UNION

SELECT managerStaffNo
FROM Staff

WHERE staffNo =
(SELECT managerStaffNo
FROM Staff
WHERE staffNo = ‘S005’);

We can easily extend this approach to find the complete answer to this query.
For this particular example, this approach works because we know how many
levels in the hierarchy have to be processed. However, if we were to ask a
more general query, such as “For each member of staff, find all the manag-
ers who directly or indirectly manage the individual,” this approach would be
impossible to implement using interactive SQL. To overcome this problem,
SQL can be embedded in a high-level programming language, which provides
constructs to facilitate iteration (see Appendix I). Additionally, many RDBMSs
provide a report writer with similar constructs. In either case, it is the appli-
cation rather than the inherent capabilities of the system that provides the
required functionality.

An extension to relational algebra that has been proposed to handle this
type of query is the unary transitive closure, or recursive closure, operation
(Merrett, 1984):

9.2 Weaknesses of RDBMSs

The transitive closure of a relation R with attributes (A, A,) defined
Transitive on the same domain is the relation R augmented with all tuples suc-
closure cessively deduced by transitivity; that is, if (a, b) and (b,) are tuples
of R, the tuple (a,) is also added to the result.

This operation cannot be performed with just a fixed number of relational
algebra operations, but requires a loop along with the Join, Projection, and Union
operations. The result of this operation on our simplified Staff relation is shown in
Figure 9.1(b).

Impedance mismatch

In Section 6.1 we noted that SQL-92 lacked computational completeness. This is true
with most Data Manipulation Languages (DMLs) for RDBMSs. To overcome this
problem and to provide additional flexibility, the SQL standard provides embed-
ded SQL to help develop more complex database applications (see Appendix I).
However, this approach produces an impedance mismatch, because we are mixing
different programming paradigms:

+ SQL is a declarative language that handles rows of data, whereas a high-level
language such as C is a procedural language that can handle only one row of data
at a time.

+ SQL and 3GLs use different models to represent data. For example, SQL provides
the built-in data types Date and Interval, which are not available in traditional pro-
gramming languages. Thus it is necessary for the application program to convert
between the two representations, which is inefficient both in programming effort
and in the use of runtime resources. It has been estimated that as much as 30%
of programming effort and code space is expended on this type of conversion
(Atkinson et al., 1983). Furthermore, as we are using two different type systems, it
is not possible to type check the application as a whole automatically.

It is argued that the solution to these problems is not to replace relational lan-
guages by row-level object-oriented languages, but to introduce set-level facilities
into programming languages (Date, 2000). However, the basis of OODBMSs is to
provide a much more seamless integration between the DBMS’s data model and the
host programming language. We return to this issue in Chapter 27.

Other problems with RDBMSs

+ Transactions in business processing are generally short-lived and the concur-
rency control primitives and protocols such as two-phase locking are not particu-
larly suited for long-duration transactions, which are more common for complex
design objects (see Section 22.4, later in this book).

+ Schema changes are difficult. Database administrators must intervene to change
database structures, and typically programs that access these structures must
be modified to adjust to the new structures. These are slow and cumbersome
processes even with current technologies. As a result, most organizations are
locked into their existing database structures. Even if they are willing and able to
change the way they do business to meet new requirements, they are unable to
make these changes, because they cannot afford the time and expense required

301

302

Chapter 9 Object-Relational DBMSs

to modify their information systems (Taylor, 1992). To meet the requirement for
increased flexibility, we need a system that caters for natural schema evolution.

- RDBMSs were designed to use content-based associative access (that is, declara-
tive statements with selection based on one or more predicates) and are poor at
navigational access (that is, access based on movement between individual records).
Navigational access is important for many of the complex applications we dis-
cussed in the previous section.

Of these three problems, the first two are applicable to many DBMSs, not just rela-
tional systems. In fact, there is no underlying problem with the relational model
that would prevent such mechanisms being implemented.

The latest releases of the SQL standard, SQL.:2003, SQL:2006, SQL:2008, and
SQL:2011 address some of these deficiencies with the introduction of many new
features, such as the ability to define new data types and operations as part of the
data definition language, and the addition of new constructs to make the language
computationally complete. We discuss SQL:2011 in detail in Section 9.5.

9.3 Storing Objects in a Relational Database

-

One approach to achieving persistence with an object-oriented programming lan-
guage, such as C++ or Java, is to use an RDBMS as the underlying storage engine.
This requires mapping class instances (that is, objects) to one or more tuples dis-
tributed over one or more relations. This can be problematic, as we discuss in this
section. For the purposes of discussion, consider the inheritance hierarchy shown in
Figure 9.2, which has a Staff superclass and three subclasses: Manager, SalesPersonnel,
and Secretary.

To handle this type of class hierarchy, we have two basics tasks to perform:

+ Design the relations to represent the class hierarchy.

Staff

staffNo {PK}

name
fName
IName

position

sex

DOB

salary

{Mandatory, Or}

Manager SalesPersonnel Secretary

bonus salesArea typingSpeed
mgrStartDate carAllowance

Figure 9.2 Sample inheritance hierarchy for Staff.

9.3 Storing Objects in a Relational Database

+ Design how objects will be accessed, which means:
— writing code to decompose the objects into tuples and store the decomposed
objects in relations;
— writing code to read tuples from the relations and reconstruct the objects.

We now describe these two tasks in more detail.

9.3.1 Mapping Classes to Relations

There are a number of strategies for mapping classes to relations, although each
results in a loss of semantic information. The code to make objects persistent and
to read the objects back from the database is dependent on the strategy chosen. We
consider three alternatives:

(1) Map each class or subclass to a relation.
(2) Map each subclass to a relation.
(3) Map the hierarchy to a single relation.

Map each class or subclass to a relation

One approach is to map each class or subclass to a relation. For the hierarchy given
in Figure 9.2, this would give the following four relations (with the primary key
underlined):

Staff (staffNo, fName, IName, position, sex, DOB, salary)
Manager (staffNo, bonus, mgrStartDate)

SalesPersonnel (staffNo, salesArea, carAllowance)
Secretary (staffNo, typingSpeed)

We assume that the underlying data type of each attribute is supported by the
RDBMS, although this may not be the case—in which case we would need to write
additional code to handle the transformation of one data type to another.

Unfortunately, with this relational schema we have lost semantic information:
it is no longer clear which relation represents the superclass and which relations
represent the subclasses. We would therefore have to build this knowledge into each
application, which as we have said elsewhere can lead to duplication of code and
potential for inconsistencies to arise.

Map each subclass to a relation

A second approach is to map each subclass to a relation. For the hierarchy given in
Figure 9.2, this would give the following three relations:

Manager (staffNo, fName, IName, position, sex, DOB, salary, bonus, mgrStartDate)
SalesPersonnel (staffNo, fName, IName, position, sex, DOB, salary, salesArea, carAllowance)
Secretary (staffNo, fName, IName, position, sex, DOB, salary, typingSpeed)

Again, we have lost semantic information in this mapping: it is no longer clear that
these relations are subclasses of a single generic class. In this case, to produce a list
of all staff we would have to select the tuples from each relation and then union the
results together.

303

304

Chapter 9 Object-Relational DBMSs

Map the hierarchy to a single relation
A third approach is to map the entire inheritance hierarchy to a single relation,

giving in this case:

Staff (staffNo, fName, IName, position, sex, DOB, salary, bonus, mgrStartDate, salesArea,
carAllowance, typingSpeed, typeFlag)

The attribute typeFlag is a discriminator to distinguish which type each tuple is
(for example, it may contain the value 1 for a Manager tuple, 2 for a SalesPersonnel
tuple, and 3 for a Secretary tuple). Again, we have lost semantic information in this
mapping. Additionally, this mapping will produce an unwanted number of nulls
for attributes that do not apply to that tuple. For example, for a Manager tuple, the
attributes salesArea, carAllowance, and typingSpeed will be null.

9.3.2 Accessing Objects in the Relational Database

Having designed the structure of the relational database, we now need to insert
objects into the database and then provide a mechanism to read, update, and
delete the objects. For example, to insert an object into the first relational schema
in the previous section (that is, where we have created a relation for each class),
the code may look something like the following using programmatic SQL (see
Appendix I):

Manager* pManager = new Manager; // create a new Manager object

... code to set wp the object . . .

EXEC SOQL INSERT INTO Staff VALUES (:pManager->staffNo, :pManager->

fName,
:pManager->IName, :pManager->position, :pManager->sex, :pManager->DOB,
:pManager->salary);

EXEC SQL INSERT INTO Manager VALUES (:pManager->bonus,
:pManager->mgrStartDate);

On the other hand, if Manager had been declared as a persistent class, then the
following (indicative) statement would make the object persistent in an OODBMS:

Manager* pManager = new Manager;

In Section 27.3.3, we examine different approaches for declaring persistent classes.
If we wish to retrieve some data from the relational database, say the details for
managers with a bonus in excess of £1000, the code might look something like the
following:

Manager* pManager = new Manager; // create a new Manager object
EXEC SQL WHENEVER NOT FOUND GOTO done; // set up error handling
EXEC SQL DECLARE managerCursor // create cursor for SELECT
CURSOR FOR
SELECT staffNo, fName, IName, salary, bonus
FROM Staff s, Manager m // Need to join Staff and Manager

WHERE s.staffNo = m.staffNo AND bonus > 1000;
EXEC SQL OPEN managerCursor;
for (;;){

9.4 Introduction to Object-Relational Database Systems

EXEC SQL FETCH managerCursor // fetch the next record in the result
INTO :staffNo, :fName, :IName, :salary, :bonus;
pManager->staffNo = :staffNo; // transfer the data to the Manager object
pManager->iName = :fName;
pManager->IName = :IName;
pManager->salary = :salary;
pManager->bonus = :bonus;
strcpy(pManager->position, “Manager”);
}
EXEC SQL CLOSE managerCursor; // close the cursor before completing

On the other hand, to retrieve the same set of data in an OODBMS, we may write
the following code:

os_Set<Manager*> &highBonus
= managerExtent->query(“Manager*”, “bonus > 1000, db1);

This statement queries the extent of the Manager class (managerExtent) to find the
required instances (bonus > 1000) from the database (in this example, dbl). The
commercial OODBMS ObjectStore has a collection template class os_Set, which
has been instantiated in this example to contain pointers to Manager objects
<Manager*>. In Section 28.3 we provide additional details of object persistence and
object retrieval with ObjectStore.

The previous examples have been given to illustrate the complexities involved
in mapping an object-oriented language to a relational database. The OODBMS
approach that we discuss in Chapters 27 and 28 attempts to provide a more seam-
less integration of the programming language data model and the database data
model, thereby removing the need for complex transformations, which as we dis-
cussed earlier could account for as much as 30% of programming effort.

9.4 Introduction to Object-Relational
Database Systems

Relational DBMSs are currently the dominant database technology, with an esti-
mated total software revenue worldwide of US$24 billion in 2011 and estimated to
grow to about US$37 billion by 2016. Until recently, the choice of DBMS seemed to
be between the relational DBMS and the object-oriented DBMS. However, many ven-
dors of RDBMS products are conscious of the threat and promise of the OODBMS.
They agree that traditional relational DBMSs are not suited to the advanced appli-
cations discussed in Section 9.1, and that added functionality is required. However,
they reject the claim that extended RDBMSs will not provide sufficient functionality
or will be too slow to cope adequately with the new complexity.

If we examine the advanced database applications that are emerging, we find
they make extensive use of many object-oriented features such as a user-extensible
type system, encapsulation, inheritance, polymorphism, dynamic binding of meth-
ods, complex objects including non-first normal form objects, and object identity.
The most obvious way to remedy the shortcomings of the relational model is to
extend the model with these types of feature. This is the approach that has been

305

306

Chapter 9 Object-Relational DBMSs

taken by many extended relational DBMSs, although each has implemented
different combinations of features. Thus, there is no single extended relational
model; rather, there are a variety of these models, whose characteristics depend
upon the way and the degree to which extensions were made. However, all the
models do share the same basic relational tables and query language, all incor-
porate some concept of “object,” and some have the ability to store methods (or
procedures or triggers) as well as data in the database.

Various terms have been used for systems that have extended the relational
data model. The original term that was used to describe such systems was the
Extended Relational DBMS (ERDBMS) and the term Universal Server or Universal
DBMS (UDBMS) has also been used. However, in recent years the more descrip-
tive term Object-Relational DBMS has been used to indicate that the system incor-
porates some notion of “object.” In this chapter we use the term Object-Relational
DBMS (ORDBMS). Three of the leading RDBMS vendors—Oracle, Microsoft, and
IBM—have all extended their systems into ORDBMSs, although the functionality
provided by each is slightly different. The concept of the ORDBMS, as a hybrid of
the RDBMS and the OODBMS, is very appealing, preserving the wealth of knowl-
edge and experience that has been acquired with the RDBMS—so much so that
some analysts predict the ORDBMS will have a 50% larger share of the market
than the RDBMS.

As might be expected, the standards activity in this area is based on extensions
to the SQL standard. The national standards bodies have been working on object
extensions to SQL since 1991. These extensions have become part of the SQL
standard, with releases in 1999, referred to as SQL:1999, 2003, (SQL:2003), 2006
with extensions for XML (SQL:2006), 2008 (SQL:2008) and 2011 (SQL:2011).
These releases of the SQL standard are an ongoing attempt to standardize
extensions to the relational model and query language. We discuss the object
extensions to SQL in some detail in this chapter. In this book, we generally use the
term SQL:2011 to refer to the 1999, 2003, 2006, 2008, and 2011 releases of the
standard.

Stonebraker’s view

Stonebraker (1996) proposed a four-quadrant view of the database world, as illus-
trated in Figure 9.3. In the lower-left quadrant are applications that process simple
data and have no requirements for querying the data. These types of application—for
example, standard text processing packages such as Microsoft Word—can use the
underlying operating system to obtain the essential DBMS functionality of persis-
tence. In the lower-right quadrant are applications that process complex data, but
again have no significant requirements for querying the data. For these types of
application—for example, computer-aided design packages—an OODBMS may be
an appropriate choice of DBMS. In the top-left quadrant are applications that process
simple data and also have requirements for complex querying. Many traditional busi-
ness applications fall into this quadrant and an RDBMS may be the most appropriate
DBMS. Finally, in the top-right quadrant are applications that process complex data
and have complex querying requirements. This represents many of the advanced
database applications that we examined in Section 9.1 and for these applications
Stonebraker argues that an ORDBMS may be the most appropriate choice of DBMS.

9.4 Introduction to Object-Relational Database Systems | 307

Relational DBMS Object-Relational DBMS

Search capabilities/

multiuser support
PP File systems Object-Oriented DBMS

Data complexity/extensibility

Figure 9.3 Four-quadrant view of the database world.

Although interesting, this is a very simplistic classification and unfortunately
many database applications are not so easily compartmentalized. Further, with the
introduction of the ODMG data model and query language, which we will discuss
in Section 28.2, and the addition of object-oriented data management features to
SQL, the distinction between the ORDBMS and OODBMS is less clear.

Advantages of ORDBMSs

Apart from the advantages of resolving many of the weaknesses cited in Section
9.2, the main advantages of extending the relational data model come from reuse
and sharing. Reuse comes from the ability to extend the DBMS server to perform
standard functionality centrally, rather than have it coded in each application. For
example, applications may require spatial data types that represent points, lines,
and polygons, with associated functions that calculate the distance between two
points, the distance between a point and a line, whether a point is contained within
a polygon, and whether two polygonal regions overlap, among others. If we can
embed this functionality in the server, it allows us to avoid the necessity of defining
it in each application that needs it, and consequently allows the functionality to be
shared by all applications. These advantages also give rise to increased productivity,
both for the developer and for the end-user.

Another obvious advantage is that the extended relational approach preserves
the significant body of knowledge and experience that has gone into develop-
ing relational applications. This is a significant advantage, as many organizations
would find it prohibitively expensive to change. If the new functionality is designed
appropriately, this approach should allow organizations to take advantage of the
new extensions in an evolutionary way without losing the benefits of current data-
base features and functions. Thus, an ORDBMS could be introduced in an integra-
tive fashion, as proof-of-concept projects. The SQL:2011 standard is designed to

308

Chapter 9 Object-Relational DBMSs

be compatible with the SQL2 standard, and so any ORDBMS that complies with
SQL:2011 should provide this capability.

Disadvantages of ORDBMSs

The ORDBMS approach has the obvious disadvantages of complexity and asso-
ciated increased costs. In addition, there are the proponents of the relational
approach who believe the essential simplicity and purity of the relational model are
lost with these types of extension. There are also those who believe that the RDBMS
is being extended for what will be a minority of applications that do not achieve
optimal performance with current relational technology.

In addition, object-oriented purists are not attracted by these extensions, either.
They argue that the terminology of object-relational systems is revealing. Instead of
discussing object models, terms like “user-defined data types” are used. The termi-
nology of object-orientation abounds with terms like “abstract types,” “class hierar-
chies,” and “object models.” However, ORDBMS vendors are attempting to portray
object models as extensions to the relational model with some additional complexi-
ties. This potentially misses the point of object orientation, highlighting the large
semantic gap between these two technologies. Object applications are simply not as
data-centric as relational-based ones. Object-oriented models and programs deeply
combine relationships and encapsulated objects to more closely mirror the real
world. This defines broader sets of relationships than those expressed in SQL, and
involves functional programs interspersed in the object definitions. In fact, objects
are fundamentally not extensions of data, but a completely different concept with
far greater power to express real-world relationships and behaviors.

In Chapter 6 we noted that the objectives of a database language included having
the capability to be used with minimal user effort, and having a command structure
and syntax that must be relatively easy to learn. The initial SQL standard, released
in 1989, appeared to satisfy these objectives. The release in 1992 increased in size
from 120 pages to approximately 600 pages, and it is more questionable whether it
satisfied these objectives. Unfortunately, the size of the SQL:2011 standard is even
more daunting, and it would seem that these two objectives are no longer being
fulfilled or even being considered by the standards bodies.

£ 9.5 sQL:2011

-

In Chapters 6 and 7 we provided an extensive tutorial on the features of the ISO
SQL standard, concentrating mainly on those features present in the 1992 version
of the standard, commonly referred to as SQL2 or SQL-92. ANSI (X3H2) and ISO
(ISO/TIEC JTC1/SC21/WG3) SQL standardization have added features to the SQL
specification to support object-oriented data management, the latest release of
which is SQL:2011 (ISO, 2011a). As we mentioned earlier, the SQL:2011 standard
is extremely large and comprehensive, and is divided into the following parts:

(1) ISO/IEC 9075-1: SQL/Framework.

(2) ISO/IEC 9075-2: SQL/Foundation, which includes new data types, user-defined
types, rules and triggers, transactions, stored routines, and binding methods
(embedded SQL, dynamic SQL, and direct invocation of SQL).

9.5 SQL:2011

(3) ISO/IEC 9075-3: SQL/CLI (Call-Level Interface), which specifies the provision
of an API interface to the database, as we discuss in Appendix I, based on the
SQL Access Group and X/Open’s CLI definitions.

(4) ISO/IEC 9075—4: SQL/PSM (Persistent Stored Modules), which allows proce-
dures and user-defined functions to be written in a 3GL or in SQL and stored
in the database, making SQL computationally complete.

(5) ISO/IEC 9075-9: SQL/MED (Management of External Data), which defines
extensions to SQL to support management of external data through the use of
foreign tables and datalink data types.

(6) ISO/IEC 9075-10: SQL/OLB (Object Language Bindings), which defines facili-
ties for embedding SQL statements in Java programs.

(7) ISO/IEC 9075-11: SQL/Schemata (Information and Definition Schemas),
which defines two schemas INFORMATION_SCHEMA and DEFINITION _
SCHEMA. The Information Schema defines views about database objects such
as tables, views, and columns. These views are defined in terms of the base
tables in the Definition Schema.

(8) ISO/IEC 9075-13: SQL/JRT (Java Routines and Types Using the Java
Programming Language), which defines extensions to SQL to allow the invo-
cation of static methods written in Java as SQL-invoked routines, and to use
classes defined in Java as SQL structured types.

(9) ISO/IEC 9075-14: SQL/XML (XML-Related Specifications), which defines
extensions to SQL to enable creation and manipulation of XML documents.

In this section we examine some of these features, and cover these topics:

« type constructors for row types and reference types;

+ user-defined types (distinct types and structured types) that can participate in
supertype/subtype relationships;

+ user-defined procedures, functions, methods, and operators;

« type constructors for collection types (arrays, sets, lists, and multisets);

« support for large objects—Binary Large Objects (BLOBs) and Character Large
Objects (CLOBs);

« recursion.

Many of the object-oriented concepts that we discuss in Appendix K are in the pro-
posal. The definitive release of the SQL:1999 standard became significantly behind
schedule and some of the object management features were deferred to a later ver-
sion of the standard. Many of these are still missing from SQL:2011.

9.5.1 Row Types

A row type is a sequence of field name/data type pairs that provides a data type to
represent the types of rows in tables, so that complete rows can be stored in vari-
ables, passed as arguments to routines, and returned as return values from function
calls. A row type can also be used to allow a column of a table to contain row values.
In essence, the row is a table nested within a table.

309

310

Chapter 9 Object-Relational DBMSs

EXAMPLE 9.1 Use of row type

To illustrate the use of row types, we create a simplified Branch table consisting of the
branch number and address, and insert a record into the new table:

CREATE TABLE Branch (
branchNo CHAR(4),

address ROW(street VARCHAR(25),
city VARCHAR(15),
postcode ROW(cityldentifier VARCHAR4),
subPart VARCHAR®4))));

INSERT INTO Branch

VALUES (‘B005’, ROW(‘23 Deer Rd’, ‘London’, ROW(‘SW1’, 4EH")));
UPDATE Branch

SET address = ROW (‘23 Deer Rd’, ‘London’, ROW (‘SW1’, ‘4EH"))
WHERE address = ROW (‘23 Deer Rd’, ‘London’, ROW (‘SW1’, 4EH’));

9.5.2 User-Defined Types

SQL:2011 allows the definition of user-defined types (UDTs), which we have previ-
ously referred to as abstract data types (ADTs). They may be used in the same way
as the predefined types (for example, CHAR, INT, FLOAT). UDTs are subdivided
into two categories: distinct types and structured types. The simpler type of UDT
is the distinct type, which allows differentiation between the same underlying base
types. For example, we could create the following two distinct types:

CREATE TYPE OwnerNumberType AS VARCHAR(5) FINAL,;
CREATE TYPE StaffNumberType AS VARCHAR(5) FINAL;

If we now attempt to treat an instance of one type as an instance of the other type, an
error would be generated. Note that although SQL also allows the creation of domains
to distinguish between different data types, the purpose of an SQL domain is solely to
constrain the set of valid values that can be stored in a column with that domain.

In its more general case, a UDT definition consists of one or more attribute defi-
nitions, zero or more routine declarations (methods) and, in a subsequent release,
operator declarations. We refer to routines and operators generically as routines.
In addition, we can also define the equality and ordering relationships for the UDT
using the CREATE ORDERING FOR statement.

The value of an attribute can be accessed using the common dot notation (.). For
example, assuming p is an instance of the UDT PersonType, which has an attribute
fName of type VARCHAR, we can access the fName attribute as:

p.fName
p.fName = ‘A. Smith’

Encapsulation and observer and mutator functions

SQL encapsulates each attribute of structured types by providing a pair of built-in
routines that are invoked whenever a user attempts to reference the attribute, an
observer (get) function and a mutator (set) function. The observer function returns

9.5 SQL:2011

the current value of the attribute; the mutator function sets the value of the attrib-
ute to a value specified as a parameter. These functions can be redefined by the user
in the definition of the UDT. In this way, attribute values are encapsulated and are
accessible to the user only by invoking these functions. For example, the observer
function for the fName attribute of PersonType would be:

FUNCTION fName(p PersonType) RETURNS VARCHAR(15)
RETURN p.fName;

and the corresponding mutator function to set the value to newValue would be:

FUNCTION fName(p PersonType RESULT, newValue VARCHAR(15))
RETURNS PersonType

BEGIN
p.fName = newValue;
RETURN p;

END;

Constructor functions and the NEW expression

A (public) constructor function is automatically defined to create new instances of
the type. The constructor function has the same name and type as the UDT, takes
zero arguments, and returns a new instance of the type with the attributes set to
their default value. User-defined constructor methods can be provided by the user
to initialize a newly created instance of a structured type. Each method must have
the same name as the structured type but the parameters must be different from the
system-supplied constructor. In addition, each user-defined constructor method
must differ in the number of parameters or in the data types of the parameters. For
example, we could initialize a constructor for type PersonType as follows:

CREATE CONSTRUCTOR METHOD PersonType (fN VARCHAR(15),
IN VARCHAR(15), sx CHAR) RETURNS PersonType SELF AS RESULT

BEGIN
SET SELF.fName = iN;
SET SELF.IName = IN;
SET SELF.sex = sx;
RETURN SELF;

END;

The NEW expression can be used to invoke the system-supplied constructor func-
tion; for example:

SET p = NEW PersonType();

User-defined constructor methods must be invoked in the context of the NEW
expression. For example, we can create a new instance of PersonType and invoke the
previous user-defined constructor method as follows:

SET p = NEW PersonType(‘John’, ‘White’, ‘M’);
This is effectively translated into:

SET p = PersonType().PersonType(‘John’, ‘White’, ‘M’);

311

312

Chapter 9 Object-Relational DBMSs

Other UDT methods

Instances of UDTs can be constrained to exhibit specified ordering properties. The
EQUALS ONLY BY and ORDER FULL BY clauses may be used to specify type-
specific functions for comparing UDT instances. The ordering can be performed
using methods that are qualified as:

« RELATIVE. The relative method is a function that returns a 0 for equals, a nega-
tive value for less than, and a positive value for greater than.

+ MAP. The map method uses a function that takes a single argument of the UDT
type and returns a predefined data type. Comparing two UDTs is achieved by
comparing the two map values associated with them.

« STATE. The state method compares the attributes of the operands to determine
an order.

CAST functions can also be defined to provide user-specified conversion functions
between different UDTs. In a subsequent version of the standard, it may also be
possible to override some of the built-in operators.

EXAMPLE 9.2 Definition of a new UDT

To illustrate the creation of a new UDT, we create a UDT for a PersonType.

CREATE TYPE PersonType AS (
dateOfBirth DATE,

fName VARCHAR(15),
IName VARCHAR(15),
sex CHAR)
INSTANTIABLE
NOT FINAL

REF IS SYSTEM GENERATED
INSTANCE METHOD age () RETURNS INTEGER,
INSTANCE METHOD age (DOB DATE) RETURNS PersonType;
CREATE INSTANCE METHOD age () RETURNS INTEGER
FOR PersonType
BEGIN
RETURN /* age calculated from SELF.dateOfBirth */;
END;
CREATE INSTANCE METHOD age (DOB DATE) RETURNS PersonType
FOR PersonType
BEGIN
SELF.dateOfBirth = /* code to set dateOfBirth from DOB¥*/;
RETURN SELF;
END;

This example also illustrates the use of stored and virtual attributes. A stored
attribute is the default type with an attribute name and data type. The data type
can be any known data type, including other UDTs. In contrast, virtual attributes
do not correspond to stored data, but to derived data. There is an implied virtual
attribute age, which is derived using the (observer) age function and assigned using

9.5 SQL:2011 313

the (mutator) age function.” From the user’s perspective, there is no distinguishable
difference between a stored attribute and a virtual attribute—both are accessed using
the corresponding observer and mutator functions. Only the designer of the UDT
will know the difference.

The keyword INSTANTIABLE indicates that instances can be created for this type.
If NOT INSTANTIABLE had been specified, we would not be able to create instances
of this type, only from one of its subtypes. The keyword NOT FINAL indicates that we
can create subtypes of this user-defined type. We discuss the clause REF IS SYSTEM
GENERATED in Section 9.5.6.

9.5.3 Subtypes and Supertypes

SQL:2011 allows UDTs to participate in a subtype/supertype hierarchy using the
UNDER clause. A type can have more than one subtype but currently only one
supertype (that is, multiple inheritance is not supported). A subtype inherits all
the attributes and behavior (methods) of its supertype and it can define additional
attributes and methods like any other UDT and it can override inherited methods.

EXAMPLE 9.3 Creation of a subtype using the UNDER clause

To create a subtype StaffType of the supertype PersonType, we write:

CREATE TYPE StaffType UNDER PersonType AS (

staffNo VARCHAR(5),

position VARCHAR(10) DEFAULT ‘Assistant’,
salary DECIMAL(7, 2),

branchNo CHAR(4))

INSTANTIABLE

NOT FINAL

INSTANCE METHOD isManager () RETURNS BOOLEAN;
CREATE INSTANCE METHOD isManager() RETURNS BOOLEAN
FOR StaffType
BEGIN
IF SELF.position = ‘Manager’ THEN
RETURN TRUE;
ELSE
RETURN FALSE;
END IF
END)

StaffType as well as having the attributes defined within the CREATE TYPE, also
includes the inherited attributes of PersonType, along with the associated observer and
mutator functions and any specified methods. In particular, the clause REF IS SYSTEM
GENERATED is also in effect inherited. In addition, we have defined an instance
method isManager that checks whether the specified member of staff is a Manager. We
show how this method can be used in Section 9.5.8.

Note that the function name age has been overloaded here. We discuss how SQL distinguishes
between these two functions in Section 9.5.5.

314

Chapter 9 Object-Relational DBMSs

An instance of a subtype is considered an instance of all its supertypes. SQL:2011
supports the concept of substitutability: that is, whenever an instance of a super-
type is expected an instance of the subtype can be used in its place. The type of a
UDT can be tested using the TYPE predicate. For example, given a UDT, say Udt1,
we can apply the following tests:

TYPE Udt1 IS OF (PersonType) // Check Udt1 is the PersonType or any of
its subtypes
TYPE Udt1 IS OF (ONLY PersonType) // Check Udt1 is the PersonType

In SQL.:2011, as in most programming languages, every instance of a UDT must
be associated with exactly one most specific type, which corresponds to the lowest sub-
type assigned to the instance. Thus, if the UDT has more than one direct supertype,
then there must be a single type to which the instance belongs, and that single type
must be a subtype of all the types to which the instance belongs. In some cases, this
can require the creation of a large number of types. For example, a type hierarchy
might consist of a maximal supertype Person, with Student and Staff as subtypes;
Student itself might have three direct subtypes: Undergraduate, Postgraduate, and
PartTimeStudent, as illustrated in Figure 9.4(a). If an instance has the type Person and
Student, then the most specific type in this case is Student, a nonleaf type, since Student
is a subtype of Person. However, with the current type hierarchy an instance cannot
have the type PartTimeStudent as well as Staff, unless we create a type PTStudentStaff,
as illustrated in Figure 9.4(b). The new leaf type, PTStudentStaff, is then the most
specific type of this instance. Similarly, some of the full-time undergraduate and
postgraduate students may work part time (as opposed to full-time employees being
part-time students), and so we would also have to add subtypes for FTUGStaff and
FTPGStaff. If we generalized this approach, we could potentially create a large num-
ber of subtypes. In some cases, a better approach may be to use inheritance at the
level of tables as opposed to types, as we discuss shortly.

Privileges

To create a subtype, a user must have the UNDER privilege on the user-defined
type specified as a supertype in the subtype definition. In addition, a user must have
USAGE privilege on any user-defined type referenced within the new type.

Prior to SQL:1999, the SELECT privilege applied only to columns of tables and
views. From SQL:1999, the SELECT privilege also applies to structured types, but
only when instances of those types are stored in typed tables and only when the
dereference operator is used from a REF value to the referenced row and then
invokes a method on that referenced row. When invoking a method on a structured
value that is stored in a column of any ordinary SQL table, SELECT privilege is
required on that column. If the method is a mutator function, UPDATE privilege
is also required on the column. In addition, EXECUTE privilege is required on all
methods that are invoked.

9.5.4 User-Defined Routines

User-defined routines (UDRs) define methods for manipulating data and are
an important adjunct to UDTs providing the required behavior for the UDTs.

9.5 SQL:2011 315
Figure 9.4
Person (a) Initial Student/
Staff hierarchy;
(b) modified
Student/Staff
hierarchy.
Student Staff
Undergraduate Postgraduate PartTimeStudent
(a)
Person
Student Staff
Undergraduate Postgraduate PartTimeStudent PTStudentStaff

(b)

An ORDBMS should provide significant flexibility in this area, such as allow-
ing UDRs to return complex values that can be further manipulated (such as
tables), and support for overloading of function names to simplify application
development.

In SQL:2011, UDRs may be defined as part of a UDT or separately as part of a
schema. An SQL-invoked routine may be a procedure, function, or method. It may
be externally provided in a standard programming language such as C, C++, or
Java, or defined completely in SQL using extensions that make the language com-
putationally complete, as we discuss in Section 9.5.10.

An SQL-invoked procedure is invoked from an SQL CALL statement. It may have
zero or more parameters, each of which may be an input parameter (IN), an output
parameter (OUT), or both an input and output parameter INOUT), and it has a
body if it is defined fully within SQL. An SQL-invoked function returns a value; any
specified parameters must be input parameters. One input parameter can be des-
ignated as the result (using the RESULT keyword), in which case the parameter’s
data type must match the type of the RETURNS type. Such a function is called #ype-
preserving, because it always returns a value whose runtime type is the same as the

316

Chapter 9 Object-Relational DBMSs

most specific type (see Section 9.5.3) of the RETURN parameter (not some subtype
of that type). Mutator functions are always type-preserving. An SQL-invoked method
is similar to a function but has some important differences:

- a method is associated with a single UDT;
- the signature of every method associated with a UDT must be specified in that

UDT and the definition of the method must specify that UDT (and must also
appear in the same schema as the UDT).

There are three types of methods:

« constructor methods, which initialize a newly created instance of a UDT;
- instance methods, which operate on specific instances of a UDT;

* static methods, which are analogous to class methods in some object-oriented
programming languages and operate at the UDT level rather than at the instance
level.

In the first two cases, the methods include an additional implicit first parameter
called SELF whose data type is that of the associated UDT. We saw an example
of the SELF parameter in the user-defined constructor method for PersonType. A
method can be invoked in one of three ways:

« a constructor method is invoked using the NEW expression, as discussed previously;

- an instance method is invoked using the standard dot notation; for example,
p.fName, or using the generalized invocation format, for example, (p AS StaffType).
fName();

- a static method is invoked using ::, for example, if totalStaff is a static method of
StaffType, we could invoke it as StaffType::totalStaff().

An external routine is defined by specifying an external clause that identifies the cor-
responding “compiled code” in the operating system’s file storage. For example, we
may wish to use a function that creates a thumbnail image for an object stored in
the database. The functionality cannot be provided in SQL and so we have to use a
function provided externally, using the following CREATE FUNCTION statement
with an EXTERNAL clause:

CREATE FUNCTION thumbnail(IN myImage ImageType) RETURNS BOOLEAN
EXTERNAL NAME ‘/usr/dreamhome/bin/images/thumbnail’

LANGUAGE C

PARAMETER STYLE GENERAL

DETERMINISTIC

NO SQL;

This SQL statement associates the SQL function named thumbnail with an external
file, “thumbnail.” It is the user’s responsibility to provide this compiled function.
Thereafter, the ORDBMS will provide a method to dynamically link this object file
into the database system so that it can be invoked when required. The procedure
for achieving this is outside the bounds of the SQL standard and so is left as
implementation-defined. A routine is deterministic if it always returns the same
return value(s) for a given set of inputs. The NO SQL indicates that this function
contains no SQL statements. The other options are READS SQL DATA, MODIFIES
SQL DATA, and CONTAINS SQL.

9.5 SQL:2011

9.5.5 Polymorphism

In Appendices K.7 and K.8, we discuss the concepts of overriding, overloading,
and more generally polymorphism. Different routines may have the same name;
that is, routine names may be overloaded, for example to allow a UDT subtype
to redefine a method inherited from a supertype, subject to the following
constraints:

+ No two functions in the same schema are allowed to have the same signature, that
is, the same number of arguments, the same data types for each argument, and
the same return type.

+ No two procedures in the same schema are allowed to have the same name and
the same number of parameters.

Overriding applies only to methods and then only based on the runtime value
of the implicit SELF argument (note that a method definition has parameters,
and a method invocation has arguments). SQL uses a generalized object model,
so that the types of all arguments to a routine are taken into consideration when
determining which routine to invoke, in order from left to right. Where there is
not an exact match between the data type of an argument and the data type of
the parameter specified, type precedence lists are used to determine the closest
match. The exact rules for routine determination for a given invocation are quite
complex and we do not give the full details here, but illustrate the mechanism for
instance methods.

Instance method invocation

The mechanism for determining the appropriate invocation of an instance method
is divided into two phases representing static analysis and runtime execution. In
this section we provide an overview of these phases. The first phase proceeds as
follows:

« All routines with the appropriate name are identified (all remaining routines are
eliminated).

+ All procedures/functions and all methods for which the user does not have
EXECUTE privilege are eliminated.

+ All methods that are not associated with the declared type (or subtype) of the
implicit SELF argument are eliminated.

+ All methods whose parameters are not equal to the number of arguments in the
method invocation are eliminated.

+ For the methods that remain, the system checks that the data type of each param-
eter matches the precedence list of the corresponding argument, eliminating
those methods that do not match.

« If there are no candidate methods remaining a syntax error occurs.

For the remaining candidate methods the second (runtime) phase proceeds as
follows:

« If the most specific type of the runtime value of the implicit argument to the
method invocation has a type definition that includes one of the candidate meth-
ods, then that method is selected for execution.

317

318

Chapter 9 Object-Relational DBMSs

- If the most specific type of the runtime value of the implicit argument to the
method invocation has a type definition that does not include one of the candi-
date methods, then the method selected for execution is the candidate method
whose associated type is the nearest supertype of all supertypes having such a
method.

The argument values are converted to the parameter data types, if appropriate, and
the body of the method is executed.

9.5.6 Reference Types and Object Identity

Object identity is that aspect of an object that never changes and that distin-
guishes the object from all other objects (see Appendix K.3). Ideally, an object’s
identity is independent of its name, structure, and location, and persists even
after the object has been deleted, so that it may never be confused with the iden-
tity of any other object. Other objects can use an object’s identity as a unique way
of referencing it.

Before SQL:1999, the only way to define relationships between tables was using
the primary key/foreign key mechanism, which in SQL2 could be expressed using
the referential table constraint clause REFERENCES, as discussed in Section 7.2.4.
Since SQL:1999, reference types have been able to be used to define relationships
between row types and uniquely identify a row within a table. A reference type
value can be stored in one (typed) table and used as a direct reference to a specific
row in some base table that has been defined to be of this type (similar to the
notion of a pointer type in C or C++). In this respect, a reference type provides
a similar functionality as the object identifier (OID) of object-oriented DBMSs (see
Appendix K.3). Thus, references allow a row to be shared among multiple tables
and enable users to replace complex join definitions in queries with much simpler
path expressions. References also give the optimizer an alternative way to navigate
data instead of using value-based joins.

REF IS SYSTEM GENERATED in a CREATE TYPE statement indicates that
the actual values of the associated REF type are provided by the system, as in
the PersonType created in Example 9.2. Other options are available but we omit
the details here; the default is REF IS SYSTEM GENERATED. As we see shortly,
a base table can be created to be of some structured type. Other columns can
be specified for the table but at least one column must be specified, namely
a column of the associated REF type, using the clause REF IS <columnName>
SYSTEM GENERATED. This column is used to contain unique identifiers for
the rows of the associated base table. The identifier for a given row is assigned
when the row is inserted into the table and remains associated with that row
until it is deleted.

9.5.7 Creating Tables

To maintain upwards compatibility with the SQL2 standard, it is still necessary to
use the CREATE TABLE statement to create a table, even if the table consists of a
single UDT. In other words, a UDT instance can persist only if it is stored as the
column value in a table. There are several variations of the CREATE TABLE state-
ment, as Examples 9.4-9.6 illustrate.

9.5 SQL:2011

EXAMPLE 9.4 Creation of a table based on a UDT
To create a table using the PersonType UDT, we could write:

CREATE TABLE Person (
info PersonType
CONSTRAINT DOB_Check CHECK(dateOfBirth > DATE ‘1900-01-01"));

or

CREATE TABLE Person OF PersonType (
dateOfBirth WITH OPTIONS
CONSTRAINT DOB_Check CHECK (dateOfBirth > DATE ‘1900-01-01")
REF IS PersonlD SYSTEM GENERATED);

In the first instance, we would access the columns of the Person table using a path
expression such as ‘Person.info.fName’; in the second version, we would access the col-

umns using a path expression such as ‘Person.fName’.

More importantly, tables constructed using the second version (CREATE TABLE . ..
OF statement) are called typed tables. The rows of a typed table are considered to
be objects, and the rows in the first version are not, even though the same UDT
has been used in both cases. A typed table has a column for every attribute of the
structured type on which it is based. In addition, a typed table has a self~referencing
column that contains a unique OID (known as a reference) for each row of the table.
Objects are inserted into a typed table using the normal INSERT statement as for
any relational table. Apart from the self-referencing column and the attributes of
the structured type, no additional columns can be added to the table definition.

The OID is generated automatically when a new row is inserted into the typed
table. However, to gain access to the OIDs stored in the self-referencing column,
we have to give the column name explicitly using the REF IS clause (PersonID in
our example). Note that a typed table definition must also repeat a reference gen-
eration specification that is consistent with the corresponding specification in the
UDT: system-generated, user-generated, or derived.

EXAMPLE 9.5 Creation of a subtable using the UNDER clause

We can create a table for staff using table inheritance:
CREATE TABLE Staff OF StaffType UNDER Person;

When we insert rows into the Staff table, the values of the inherited columns are inserted
into the Person table. Similarly, when we delete rows from the Staff table, the rows disap-
pear from both the Staff and Person tables. As a result, when we access all rows of Person,
this will also include all Staff details.

There are restrictions on the population of a table hierarchy:

+ Each row of the supertable Person can correspond to at most one row in Staff.

+ Each row in Staff must have exactly one corresponding row in Person.

The semantics maintained are those of containment: a row in a subtable is in effect
“contained” in its supertables. We would expect the SQL INSERT, UPDATE, and

319

320

Chapter 9 Object-Relational DBMSs

DELETE statements to maintain this consistency when the rows of subtables and
supertables are being modified, as follows (at least conceptually):

« When a row is inserted into a subtable, then the values of any inherited columns
of the table are inserted into the corresponding supertables, cascading upwards
in the table hierarchy. For example, referring to Figure 9.4(b), if we insert a row
into PTStudentStaff, then the values of the inherited columns are inserted into
Student and Staff, and then the values of the inherited columns of Student/Staff are
inserted into Person.

« When a row is updated in a subtable, a procedure to the previous one is carried
out to update the values of inherited columns in the supertables.

« When a row is updated in a supertable, then the values of all inherited columns
in all corresponding rows of its direct and indirect subtables are also updated
accordingly. As the supertable may itself be a subtable, the previous condition will
also have to be applied to ensure consistency.

« When a row is deleted in a subtable/supertable, the corresponding rows in the
table hierarchy are deleted. For example, if we deleted a row of Student, the corre-
sponding rows of Person and Undergraduate/Postgraduate/PartTimeStudent/PTStudentStalff
are deleted.

SQL:2011 does not provide a mechanism to store all instances of a given UDT
unless the user explicitly creates a single table in which all instances are stored.
Thus, in SQL:2011 it may not be possible to apply an SQL query to all instances of
a given UDT. For example, if we created another table such as:

CREATE TABLE Client (
info PersonType,
prefType CHAR,
maxRent DECIMAL(6, 2),
branchNo VARCHAR(4) NOT NULL);

then the instances of PersonType are now distributed over two tables: Staff and Client.
This problem can be overcome in this particular case using the table inheritance
mechanism, which allows a table to be created that inherits all the columns of an
existing table using the UNDER clause. As would be expected, a subtable inherits
every column from its supertable. Note that all the tables in a table hierarchy must
have corresponding types that are in the same type hierarchy, and the tables in the
table hierarchy must be in the same relative positions as the corresponding types
in the type hierarchy. However, not every type in the type hierarchy has to be rep-
resented in the table hierarchy, provided the range of types for which tables are
defined is contiguous. For example, referring to Figure 9.4(a), it would be legal to
create tables for all types except Staff; however, it would be illegal to create tables
for Person and Postgraduate without creating one for Student. Note also that additional
columns cannot be defined as part of the subtable definition.

EXAMPLE 9.6 Using a reference type to define a relationship

In this example, we model the relationship between PropertyForRent and Staff using a
reference type.

CREATE TABLE PropertyForRent(

9.5 SQL:2011
propertyNo PropertyNumber NOT NULL,
street Street NOT NULL,
city City NOT NULL,
postcode PostCode,
type PropertyType NOT NULL DEFAULT ‘F’,
rooms PropertyRooms NOT NULL DEFAULT 4,
rent PropertyRent NOT NULL DEFAULT 600,
staffiD REF(StaffType) SCOPE Staff

REFERENCES ARE CHECKED ON DELETE CASCADE,
PRIMARY KEY (propertyNo));

In Example 7.1 we modeled the relationship between PropertyForRent and Staff using the
traditional primary key/foreign key mechanism. Here, however, we have used a refer-
ence type, REF(StaffType), to model the relationship. The SCOPE clause specifies the
associated referenced table. REFERENCES ARE CHECKED indicates that referential
integrity is to be maintained (alternative is REFERENCES ARE NOT CHECKED). ON
DELETE CASCADE corresponds to the normal referential action that existed in SQL2.
Note that an ON UPDATE clause is not required, as the column stafflD in the Staff table
cannot be updated.

Privileges
As with the privileges required to create a new subtype, a user must have the

UNDER privilege on the referenced supertable. In addition, a user must have
USAGE privilege on any user-defined type referenced within the new table.

9.5.8 Querying Data

SQL:2011 provides the same syntax as SQL2 for querying and updating tables,
with various extensions to handle objects. In this section, we illustrate some of these
extensions.

EXAMPLE 9.7 Retrieve a specific column, specific rows

Find the names of all Managers.

SELECT s.IName
FROM Staff s
WHERE s.position = ‘Manager’;

This query invokes the implicitly defined observer function position in the WHERE
clause to access the position column.

EXAMPLE 9.8 Invoking a user-defined function

Find the names and ages of all Managers.

SELECT s.IName, s.age
FROM Staff s

WHERE s.isManager;

321

322

Chapter 9 Object-Relational DBMSs

This alternative method of finding Managers uses the user-defined method isManager as
a predicate of the WHERE clause. This method returns the boolean value TRUE if the
member of staff is a manager (see Example 9.3). In addition, this query also invokes the
inherited virtual (observer) function age as an element of the SELECT list.

EXAMPLE 9.9 Use of ONLY to restrict selection
Find the names of all people in the database over 65 years of age.

SELECT p.IName, p.fName
FROM Person p
WHERE p.age > 65;

This query lists not only the details of rows that have been explicitly inserted into the
Person table, but also the names from any rows that have been inserted into any direct
or indirect subtables of Person, in this case, Staff and Client.

Suppose, however, that rather than wanting the details of all people, we want only the
details of the specific instances of the Person table, excluding any subtables. This can be
achieved using the ONLY keyword:

SELECT p.IName, p.fName
FROM ONLY (Person) p
WHERE p.age > 65;

EXAMPLE 9.10 Use of the dereference operator
Find the name of the member of staff who manages property ‘PG4’

SELECT p.staffID—>fName AS fName, p.staffI D—>IName AS IName
FROM PropertyForRent p
WHERE p.propertyNo = ‘PG4’;

References can be used in path expressions that permit traversal of object references
to navigate from one row to another. To traverse a reference, the dereference operator
(=>) is used. In the SELECT statement, p.stafflD is the normal way to access a column
of a table. In this particular case though, the column is a reference to a row of the Staff
table, and so we must use the dereference operator to access the columns of the derefer-
enced table. In SQL2, this query would have required a join or nested subquery.

To retrieve the member of staff for property PG4, rather than just the first and last
names, we would use the following query instead:

SELECT DEREF(p.staffiD) AS Staff
FROM PropertyForRent p

WHERE p.propertyNo = ‘PG4’;

Although reference types are similar to foreign keys, there are significant dif-
ferences. In SQL:2011, referential integrity is maintained only by using a refer-
ential constraint definition specified as part of the table definition. By themselves,

9.5 SQL:2011

reference types do not provide referential integrity. Thus, the SQL reference type
should not be confused with that provided in the ODMG object model. In the
ODMG model, OIDs are used to model relationships between types and referential
integrity is automatically defined, will be discussed in Section 28.2.2.

9.5.9 Collection Types

Collections are type constructors that are used to define collections of other types.
Collections are used to store multiple values in a single column of a table and can
result in nested tables where a column in one table actually contains another table.
The result can be a single table that represents multiple master-detail levels. Thus,
collections add flexibility to the design of the physical database structure.
SQL:1999 introduced an ARRAY collection type and SQL:2003 added the
MULTISET collection type, and a subsequent version of the standard may introduce
parameterized LIST and SET collection types. In each case, the parameter, called
the element type, may be a predefined type, a UDT, a row type, or another collection,
but cannot be a reference type or a UDT containing a reference type. In addition,
each collection must be homogeneous: all elements must be of the same type, or at
least from the same type hierarchy. The collection types have the following meaning:

« ARRAY—one-dimensional array with a maximum number of elements;
« MULTISET—unordered collection that does allow duplicates;

+ LIST—ordered collection that allows duplicates;

« SET—unordered collection that does not allow duplicates.

These types are similar to those defined in the ODMG 3.0 standard that will be
discussed in Section 28.2, with the name Bag replaced with the SQL. MULTISET.

ARRAY collection type

An array is an ordered collection of not necessarily distinct values, whose elements
are referenced by their ordinal position in the array. An array is declared by a data
type and optionally a maximum cardinality; for example:

VARCHAR(25) ARRAY/[5]

The elements of this array can be accessed by an index ranging from 1 to the
maximum cardinality (the function CARDINALITY returns the number of current
elements in the array). Two arrays of comparable types are considered identical
if and only if they have the same cardinality and every ordinal pair of elements is
identical.

An array type is specified by an array type constructor, which can be defined by
enumerating the elements as a comma-separated list enclosed in square brackets or
by using a query expression with degree 1; for example:

ARRAY [‘Mary White’, ‘Peter Beech’, ‘Anne Ford’, ‘John Howe’, ‘Alan Brand’]
ARRAY (SELECT rooms FROM PropertyForRent)

In these cases, the data type of the array is determined by the data types of the
various array elements.

323

324

Chapter 9 Object-Relational DBMSs

EXAMPLE 9.11 Use of a collection ARRAY

To model the requirement that a branch has up to three telephone numbers, we could
implement the column as an ARRAY collection type:

telNo VARCHAR(13) ARRAY([3]

We could now retrieve the first and last telephone numbers at branch B003 using the
following query:

SELECT telNo[1], teINo[CARDINALITY (telNo)]
FROM Branch
WHERE branchNo = ‘B003’;

MULTISET collection type

A multiset is an unordered collection of elements, all of the same type, with
duplicates permitted. Because a multiset is unordered there is no ordinal posi-
tion to reference individual elements of a multiset. Unlike arrays, a multiset is an
unbounded collection with no declared maximum cardinality (although there will
be an implementation-defined limit). Although multisets are analogous to tables,
they are not regarded as the same as tables, and operators are provided to convert
a multiset to a table (UNNEST) and a table to a multiset (MULTISET).

There is currently no separate type proposed for sets. Instead, a set is simply a
special kind of multiset: one that has no duplicate elements. A predicate is provided
to check whether a multiset is a set.

Two multisets of comparable element types, A and B say, are considered identi-
cal if and only if they have the same cardinality and for each element x in A, the
number of elements of A that are identical to x, including x itself, equals the num-
ber of elements of B that are equal to x. Again as with array types, a multiset type
constructor can be defined by enumerating their elements as a comma-separated
list enclosed in square brackets, or by using a query expression with degree 1, or by
using a table value constructor.

Operations on multisets include:

« The SET function, to remove duplicates from a multiset to produce a set.
« The CARDINALITY function, to return the number of current elements.

« The ELEMENT function, to return the element of a multiset if the multiset only
has one element (or null if the multiset has no elements). An exception is raised
if the multiset has more than one element.

« MULTISET UNION, which computes the union of two multisets; the keywords
ALL or DISTINCT can be specified to either retain duplicates or remove them.

« MULTISET INTERSECT, which computes the intersection of two multisets; the
keyword DISTINCT can be specified to remove duplicates; the keyword ALL can
be specified to place in the result as many instances of each value as the minimum
number of instances of that value in either operand.

-« MULTISET EXCEPT, which computes the difference of two multisets; again,
the keyword DISTINCT can be specified to remove duplicates; the keyword ALL
can be specified to place in the result a number of instances of a value, equal to
the number of instances of the value in the first operand minus the number of
instances of the second operand.

9.5 SQL:2011 325

There are three new aggregate functions for multisets:

« COLLECT, which creates a multiset from the value of the argument in each row
of a group;

+ FUSION, which creates a multiset union of a multiset value in all rows of a group;

« INTERSECTION, which creates the multiset intersection of a multiset value in
all rows of a group.

In addition, a number of predicates exist for use with multisets:

+ comparison predicate (equality and inequality only);
« DISTINCT predicate;
+ MEMBER predicate;

« SUBMULTISET predicate, which tests whether one multiset is a submultiset of
another;

« IS A SET/IS NOT A SET predicate, which checks whether a multiset is a set.

EXAMPLE 9.12 Use of a collection MULTISET

Extend the Staff table to contain the details of a number of next-of-kin and then find the first and last
names of John White’s next-of-kin.

We include the definition of a nextOfKin column in Staff as follows (NameType contains a
fName and IName attribute):

nextOfKin NameType MULTISET
The query becomes:

SELECT n.fName, n.IName
FROM Staff s, UNNEST (s.nextOfKin) AS n(fName, IName)
WHERE s.IName = ‘White’ AND s.fName = ‘John’;

Note that in the FROM clause we may use the multiset-valued field s.nextOfKin as a table
reference.

EXAMPLE 9.13 Use of the FUSION and INTERSECTION aggregate functions

Consider the following table, PropertyViewDates, giving the dates properties have been
viewed by potential renters:

propertyNo viewDates
PAI4 MULTISET[14-May-13', 24-May-137]
PG4 MULTISET[20-Apr-13', ‘14-May-13", 26-May-13]
PG36 MULTISET['28-Apr-13', ‘[4-May-13]

PL94 Null

326

Chapter 9 Object-Relational DBMSs

The following query based on multiset aggregation:

SELECT FUSION (viewDates) AS viewDateFusion,
INTERSECTION (viewDates) AS viewDatelntersection
FROM PropertyViewDates;

produces the following result set:

viewDateFusion viewDatelntersection

MULTISET[' [4-May-13’, *14-May- 13, MULTISETT' [4-May-13']

‘14-May-13', 24-May-13', 20-Apr-13',

26-May-13', 28-Apr-13']
The fusion is computed by first discarding those rows with a null (in this case, the row for
property PL94). Then each member of each of the remaining three multisets is copied

to the result set. The intersection is computed by again discarding those rows with a null
and then finding the duplicates in the input multisets.

9.5.10 Typed Views

SQL:2011 also supports typed views, sometimes called object views or referenceable
views. A typed view is created based on a particular structured type and a subview
can be created based on this typed view. The following example illustrates the usage
of typed views.

EXAMPLE 9.14 Creation of typed views

The following statements create two views based on the PersonType and StaffType struc-
tured types:

CREATE VIEW FemaleView OF PersonType (REF IS personlD DERIVED)
AS SELECT fName, IName
FROM ONLY (Person)
WHERE sex = ‘F’;

CREATE VIEW FemaleStaff3View OF StaffType UNDER FemaleView
AS SELECT fName, IName, staffNo, position
FROM ONLY (Staff)
WHERE branchNo = ‘B003’;

The (REF IS personlD DERIVED) is the self-referencing column specification discussed
previously. When defining a subview, this clause cannot be specified. When defin-
ing a maximal superview, this clause can be specified, although the option SYSTEM
GENERATED cannot be used, only USER GENERATED or DERIVED. If USER
GENERATED is specified, then the degree of the view is one more than the number of
attributes of the associated structured type; if DERIVED is specified then the degree is
the same as the number of attributes in the associated structured type and no additional
self-referencing column is included.

As with normal views, new column names can be specified as can the WITH CHECK
OPTION clause.

9.5 SQL:2011

9.5.11 Persistent Stored Modules

A number of new statement types have been added to SQL to make the language
computationally complete, so that object behavior (methods) can be stored and
executed from within the database as SQL statements. We discussed these state-
ments in Section 8.1.

9.5.12 Triggers

A trigger is an SQL (compound) statement that is executed automatically by the
DBMS as a side effect of a modification to a named table. It is similar to an SQL
routine, in that it is a named SQL block with declarative, executable, and condition-
handling sections. However, unlike a routine, a trigger is executed implicitly when-
ever the triggering event occurs, and a trigger does not have any arguments. The act
of executing a trigger is sometimes known as firing the trigger. Triggers can be used
for a number of purposes including:

- validating input data and maintaining complex integrity constraints that other-
wise would be difficult, if not impossible, through table constraints;

+ supporting alerts (for example, using electronic mail) that action needs to be
taken when a table is updated in some way;

- maintaining audit information, by recording the changes made, and by whom;

« supporting replication, as discussed in Chapter 26.

The basic format of the CREATE TRIGGER statement is as follows:

CREATE TRIGGER TriggerName
BEFORE | AFTER | INSTEAD OF <triggerEvent> ON <TableName>
[REFERENCING <o0ldOrNewValuesAliasList>]
[FOR EACH {ROW | STATEMENT
[WHEN (triggerCondition)]
<triggerBody>

Triggering events include insertion, deletion, and update of rows in a table. In
the latter case only, a triggering event can also be set to cover specific named col-
umns of a table. A trigger has an associated timing of either BEFORE, AFTER, or
INSTEAD OF. A BEFORE trigger is fired before the associated event occurs, an
AFTER trigger is fired after the associated event occurs, and an INSTEAD OF trig-
ger is fired in place of the trigger event. The triggered action is an SQL procedure
statement, which can be executed in one of two ways:

- for each row affected by the event (FOR EACH ROW). This is called a row-level
trigger;

- only once for the entire event (FOR EACH STATEMENT), which is the default.
This is called a statement-level trigger.

The <oldOrNewValuesAliasList> can refer to:

+ an old or new row (OLD/NEW or OLD ROW/NEW ROW), in the case of a row-
level trigger;

+ an old or new table (OLD TABLE/NEW TABLE), in the case of an AFTER trigger.

327

328

Chapter 9 Object-Relational DBMSs

Clearly, old values are not applicable for insert events, and new values are not
applicable for delete events. The body of a trigger cannot contain any:

+ SQL transaction statements, such as COMMIT or ROLLBACK;

+ SQL connection statements, such as CONNECT or DISCONNECT;

+ SQL schema definition or manipulation statements, such as the creation or dele-
tion of tables, user-defined types, or other triggers;

« SQL session statements, such as SET SESSION CHARACTERISTICS, SET
ROLE, SET TIME ZONE.

Furthermore, SQL does not allow mutating triggers, that is, triggers that cause a
change resulting in the same trigger to be invoked again, possibly in an endless
loop. As more than one trigger can be defined on a table, the order of firing of
triggers is important. Triggers are fired as the trigger event (INSERT, UPDATE,
DELETE) is executed. The following order is observed:

(1) Execution of any BEFORE statement-level trigger on the table.

(2) For each row affected by the statement:
(a) execution of any BEFORE row-level trigger;
(b) execution of the statement itself;
(c) application of any referential constraints;
(d) execution of any AFTER row-level trigger.

(3) Execution of any AFTER statement-level trigger on the table.

Note from this ordering that BEFORE triggers are activated before referential
integrity constraints have been checked. Thus, it is possible that the requested
change that has caused the trigger to be invoked will violate database integrity
constraints and will have to be disallowed. Therefore, BEFORE triggers should not
further modity the database.

Should there be more than one trigger on a table with the same trigger event and
the same action time (BEFORE or AFTER) then the SQL standard specifies that the
triggers are executed in the order they were created. We now illustrate the creation
of triggers with some examples.

EXAMPLE 9.15 Use of an AFTER INSERT trigger

Create a set of mailshot records for each new PropertyForRent row. For the purposes of this exam-
ple, assume that there is a Mailshot table that records prospective renter details and property details.

CREATE TRIGGER InsertMailshotTable
AFTER INSERT ON PropertyForRent
REFERENCING NEW ROW AS pfr
BEGIN ATOMIC
INSERT INTO Mailshot VALUES
(SELECT c.fName, c.IName, c.maxRent, pfr.propertyNo,
pfr.street, pfr.city, pfr.postcode, pfr.type, pfr.rooms,
pfr.rent
FROM Client c

9.5 SQL:2011

WHERE c.branchNo = pfr.boranchNo AND
(c.prefType = pfr.type AND c.maxRent <= pfr.rent))
END;

This trigger is executed after the new row has been inserted. The FOR EACH clause has
been omitted, defaulting to FOR EACH STATEMENT, as an INSERT statement only
inserts one row at a time. The body of the trigger is an INSERT statement based on a
subquery that finds all matching client rows.

EXAMPLE 9.16 Use of an AFTER INSERT trigger with condition

Create a trigger that modifies all current mailshot records if the rent for a property changes.

CREATE TRIGGER UpdateMailshotTable

AFTER UPDATE OF rent ON PropertyForRent

REFERENCING NEW ROW AS pfr

FOR EACH ROW

BEGIN ATOMIC
DELETE FROM Mailshot WHERE maxRent > pfr.rent;
UPDATE Mailshot SET rent = pfr.rent
WHERE propertyNo = pfr.propertyNo;

END:;

This trigger is executed after the rent field of a PropertyForRent row has been updated.
The FOR EACH ROW clause is specified, as all property rents may have been increased
in one UPDATE statement, for example due to a cost of living rise. The body of the
trigger has two SQL statements: a DELETE statement to delete those mailshot records
where the new rental price is outside the client’s price range, and an UPDATE statement
to record the new rental price in all rows relating to that property.

Triggers can be a very powerful mechanism if used appropriately. The major
advantage is that standard functions can be stored within the database and enforced
consistently with each update to the database. This can dramatically reduce the
complexity of applications. However, there can be some disadvantages:

« Complexity. When functionality is moved from the application to the database,
the database design, implementation, and administration tasks become more
complex.

« Hidden functionality. Moving functionality to the database and storing it as one or
more triggers can have the effect of hiding functionality from the user. Although
this can simplify things for the user, unfortunately it can also have side effects that
may be unplanned, and potentially unwanted and erroneous. The user no longer
has control over what happens to the database.

* Performance overhead. When the DBMS is about to execute a statement that modi-
fies the database, it now has to evaluate the trigger condition to check whether
a trigger should be fired by the statement. This has a performance implication
on the DBMS. Clearly, as the number of triggers increases, this overhead also
increases. At peak times, this overhead may create performance problems.

329

330

Chapter 9 Object-Relational DBMSs

Privileges

To create a trigger, a user must have TRIGGER privilege on the specified table,
SELECT privilege on any tables referenced in the triggerCondition of the WHEN
clause, together with any privileges required to execute the SQL statements in the

trigger body.

9.5.13 Large Objects

A large object is a data type that holds a large amount of data, such as a long text
file or a graphics file. Three different types of large object data types are defined
in SQL:2011:

+ Binary Large Object (BLOB), a binary string that does not have a character set
or collation association;

« Character Large Object (CLOB) and National Character Large Object (NCLOB),
both character strings.

The SQL large object is slightly different from the original type of BLOB that
appears in some database systems. In such systems, the BLOB is a noninterpreted
byte stream, and the DBMS does not have any knowledge concerning the content of
the BLOB or its internal structure. This prevents the DBMS from performing que-
ries and operations on inherently rich and structured data types, such as images,
video, word processing documents, or Web pages. Generally, this requires that the
entire BLOB be transferred across the network from the DBMS server to the client
before any processing can be performed. In contrast, the SQL large object does
allow some operations to be carried out in the DBMS server. The standard string
operators, which operate on characters strings and return character strings, also
operate on character large object strings, such as:

+ The concatenation operator, (stringl || string2), which returns the character
string formed by joining the character string operands in the specified order.

+ The character substring function, SUBSTRING(string FROM startpos FOR
length), which returns a string extracted from a specified string from a start posi-
tion for a given length.

+ The character overlay function, OVERLAY (stringl PLACING string2 FROM start-
pos FOR length), which replaces a substring of stringl, specified as a starting posi-
tion and a length, with string?2. This is equivalent to: SUBSTRING(stringl FROM
1 FOR length — 1) || string2 || SUBSTRING (stringl FROM startpos + length).

+ The fold functions, UPPER(string) and LOWER(string), which convert all char-
acters in a string to upper/lower case.

« The trim function, TRIM([LEADING | TRAILING | BOTH stringl FROM]
string?), which returns string2 with leading and/or trailing stringl characters
removed. If the FROM clause is not specified, all leading and trailing spaces are
removed from string?2.

+ The length function, CHAR_LENGTH(string), which returns the length of the
specified string.

« The position function, POSITION(stringl IN string?2), which returns the start
position of stringl within string2.

9.6 Object-Oriented Extensions in Oracle

However, CLOB strings are not allowed to participate in most comparison opera-
tions, although they can participate in a LIKE predicate, and a comparison or
quantified comparison predicate that uses the equals (=) or not equals (<>) opera-
tors. As a result of these restrictions, a column that has been defined as a CLOB
string cannot be referenced in such places as a GROUP BY clause, an ORDER BY
clause, a unique or referential constraint definition, a join column, or in one of the
set operations (UNION, INTERSECT, and EXCEPT).

A binary large object (BLOB) string is defined as a sequence of octets. All BLOB
strings are comparable by comparing octets with the same ordinal position. The
following operators operate on BLOB strings and return BLOB strings, and have
similar functionality as those defined previously:

- the BLOB concatenation operator (|));

+ the BLOB substring function (SUBSTRING);
- the BLOB overlay function (OVERLAY);

+ the BLOB trim function (TRIM).

In addition, the BLOB_LENGTH and POSITION functions and the LIKE predi-
cate can also be used with BLOB strings.

EXAMPLE 9.17 Use of Character and Binary Large Objects
Extend the Staff table to hold a resumé and picture for the staff member.

ALTER TABLE Staff

ADD COLUMN resume CLOB(50K);
ALTER TABLE Staff

ADD COLUMN picture BLOB(12M);

Two new columns have been added to the Staff table: resume, which has been defined as
a CLOB of length 50K, and picture, which has been defined as a BLOB of length 12M.
The length of a large object is given as a numeric value with an optional specification
of K, M, or G, indicating kilobytes, megabytes, or gigabytes, respectively. The default
length, if left unspecified, is implementation-defined.

9.5.14 Recursion

In Section 9.2 we discussed the difficulty that RDBMSs have with handling recur-
sive queries. A major new operation in SQL for specifying such queries is linear
recursion. We discussed recursion in Section 8.4.

9.6 Object-Oriented Extensions in Oracle

| S—

In Appendix H we examine some of the standard facilities of Oracle, including the
base data types supported by Oracle, the procedural programming language PL/
SQL, stored procedures and functions, and triggers. Many of the object-oriented
features that appear in the new SQL:2011 standard appear in Oracle in one form
or another. In this section we briefly discuss some of the object-oriented features
in Oracle.

331

332

Chapter 9 Object-Relational DBMSs

9.6.1 User-Defined Data Types

As well as supporting the built-in data types that we discuss in Appendix H.2.3,
Oracle supports two user-defined data types: object types and collection types.

Object types

An object type is a schema object that has a name, a set of attributes based on the
built-in data types or possibly other object types, and a set of methods, similar
to what we discussed for an SQL:2011 object type. For example, we could create
Address, Staff, and Branch types as follows:

CREATE TYPE AddressType AS OBJECT (
street VARCHARZ2(25),
city VARCHAR2(15),
postcode VARCHAR2(8));

CREATE TYPE StaffType AS OBJECT (
staffNo VARCHARZ2(5),

fName VARCHAR2(15),
IName VARCHAR2(15),
position VARCHARZ2(10),
sex CHAR,

DOB DATE,

salary DECIMAL(7, 2),

MAP MEMBER FUNCTION age RETURN INTEGER,

PRAGMA RESTRICT_REFERENCES(age, WNDS, WNPS, RNPS))
NOT FINAL;
CREATE TYPE BranchType AS OBJECT (

branchNo VARCHAR2(4),

address AddressType,
MAP MEMBER FUNCTION getbranchNo RETURN VARCHAR2(4),
PRAGMA RESTRICT_REFERENCES(getoranchNo, WNDS, WNPS,

RNDS, RNPS));

We can then create a Branch (object) table using the following statement:
CREATE TABLE Branch OF BranchType (branchNo PRIMARY KEY);

This creates a Branch table with columns branchNo and address of type AddressType.
Each row in the Branch table is an object of type BranchType. The pragma clause is
a compiler directive that denies member functions read/write access to database
tables and/or package variables (WNDS means does not modify database tables, WNPS
means does not modify packaged variables, RNDS means does not query database tables,
and RNPS means does not reference package variables). This example also illustrates
another object-relational feature in Oracle: the specification of methods.

Methods

The methods of an object type are classified as member, static, or explicit compari-
son. A member method is a function or a procedure that always has an implicit or
explicit SELF parameter as its first parameter, whose type is the containing object

9.6 Object-Oriented Extensions in Oracle

type. Such methods are useful as observer and mutator functions and are invoked
in the selfish style, for example object.method(), where the method finds all its argu-
ments among the attributes of the object. We have defined an observer member
method getbranchNo in the new type BranchType; we will show the implementation of
this method shortly.

A static method is a function or a procedure that does not have an implicit SELF
parameter. Such methods are useful for specifying user-defined constructors or cast
methods and may be invoked by qualifying the method with the type name, as in
typename.method().

A comparison method is used for comparing instances of object types. Oracle
provides two ways to define an order relationship among objects of a given type:

- a map method uses Oracle’s ability to compare built-in types. In our example,
we have defined a map method for the new type BranchType, which compares two
branch objects based on the values in the branchNo attribute. We show an imple-
mentation of this method shortly.

- an order method uses its own internal logic to compare two objects of a given
object type. It returns a value that encodes the order relationship. For example, it
may return —1 if the first is smaller, 0 if they are equal, and 1 if the first is larger.

For an object type, either a map method or an order method can be defined, but
not both. If an object type has no comparison method, Oracle cannot determine a
greater than or less than relationship between two objects of that type. However, it
can attempt to determine whether two objects of the type are equal using the fol-
lowing rules:

« if all the attributes are nonnull and equal, the objects are considered equal;

- if there is an attribute for which the two objects have unequal nonnull values, the
objects are considered unequal;

« otherwise, Oracle reports that the comparison is not available (null).

Methods can be implemented in PL/SQL, Java, and C, and overloading is sup-
ported provided their formal parameters differ in number, order, or data type. For
the previous example, we could create the body for the member functions specified
previously for types BranchType and StaffType as follows:

CREATE OR REPLACE TYPE BODY BranchType AS
MAP MEMBER FUNCTION getbranchNo RETURN VARCHAR2(4) IS
BEGIN
RETURN branchNo;
END;
END;
CREATE OR REPLACE TYPE BODY StaffType AS
MAP MEMBER FUNCTION age RETURN INTEGER IS
var NUMBER;
BEGIN
var := TRUNC(MONTHS_BETWEEN(SYSDATE, DOB)/12);
RETURN var;
END;
END;

333

334

Chapter 9 Object-Relational DBMSs

The member function getbranchNo acts not only as an observer method to return the
value of the branchNo attribute, but also as the comparison (map) method for this
type. We will provide an example of the use of this method shortly. As in SQL:2011,
user-defined functions can also be declared separately from the CREATE TYPE
statement. In general, user-defined functions can be used in:

« the select list of a SELECT statement;

« a condition in the WHERE clause;

« the ORDER BY or GROUP BY clauses;

« the VALUES clause of an INSERT statement;
+ the SET clause of an UPDATE statement.

Oracle also allows user-defined operators to be created using the CREATE
OPERATOR statement. Like built-in operators, a user-defined operator takes a set
of operands as input and return a result. Once a new operator has been defined, it
can be used in SQL statements like any other built-in operator.

Constructor methods Every object type has a system-defined constructor method
that makes a new object according to the object type’s specification. The construc-
tor method has the same name as the object type and has parameters that have the
same names and types as the object type’s attributes. For example, to create a new
instance of BranchType, we could use the following expression:

BranchType(‘B003’, AddressType(‘163 Main St’, ‘Glasgow’, ‘G11 9QX"));

Note that the expression AddressType(‘163 Main St’, ‘Glasgow’, ‘G11 9QX’) is itself
an invocation of the constructor for the type AddressType.

Object identifiers

Every row object in an object table has an associated logical object identifier (OID),
which by default is a unique system-generated identifier assigned for each row
object. The purpose of the OID is to uniquely identify each row object in an object
table. To do this, Oracle implicitly creates and maintains an index on the OID
column of the object table. The OID column is hidden from users and there is no
access to its internal structure. Although OID values in themselves are not very
meaningful, the OIDs can be used to fetch and navigate objects. (Note, objects that
appear in object tables are called row objects and objects that occupy columns of
relational tables or as attributes of other objects are called column objects.)

Oracle requires every row object to have a unique OID. The unique OID value
may be specified to come from the row object’s primary key or to be system-
generated, using either the clause OBJECT IDENTIFIER IS PRIMARY KEY or
OBJECT IDENTIFIER IS SYSTEM GENERATED (the default) in the CREATE
TABLE statement. For example, we could restate the creation of the Branch table as:

CREATE TABLE Branch OF BranchType (branchNo PRIMARY KEY)
OBJECT IDENTIFIER IS PRIMARY KEY;

REF data type

Oracle provides a built-in data type called REF to encapsulate references to row
objects of a specified object type. In effect, a REF is used to model an association

9.6 Object-Oriented Extensions in Oracle

between two row objects. A REF can be used to examine or update the object it
refers to and to obtain a copy of the object it refers to. The only changes that can
be made to a REF are to replace its contents with a reference to a different object of
the same object type or to assign it a null value. At an implementation level, Oracle
uses object identifiers to construct REFs.

As in SQL:2011, a REF can be constrained to contain only references to a speci-
fied object table, using a SCOPE clause. As it is possible for the object identified by
a REF to become unavailable, for example through deletion of the object, Oracle
SQL has a predicate IS DANGLING to test REFs for this condition. Oracle also
provides a dereferencing operator, DEREF, to access the object referred to by a
REF. For example, to model the manager of a branch we could change the defini-
tion of type BranchType to:

CREATE TYPE BranchType AS OBJECT (
branchNo VARCHAR2(4),
address AddressType,
manager REF StaffType,
MAP MEMBER FUNCTION getbranchNo RETURN VARCHARZ2(4),
PRAGMA RESTRICT_REFERENCES(getbranchNo, WNDS, WNPS,
RNDS, RNPS));

In this case, we have modeled the manager through the reference type, REF
StaffType. We see an example of how to access this column shortly.

Type inheritance

Oracle supports single inheritance allowing a subtype to be derived from a single
parent type. The subtype inherits all the attributes and methods of the supertype
and additionally can add new attributes and methods, and it can override any of
the inherited methods. As with SQL:2011, the UNDER clause is used to specity the
supertype.

Collection types

For modeling multi-valued attributes and many-to-many relationships, Oracle cur-
rently supports two collection types: array types and nested tables.

Array types An array is an ordered set of data elements that are all of the same
data type. Each element has an index, which is a number corresponding to the ele-
ment’s position in the array. An array can have a fixed or variable size, although in
the latter case a maximum size must be specified when the array type is declared.
For example, a branch office can have up to three telephone numbers, which we
could model in Oracle by declaring the following new type:

CREATE TYPE TelNoArrayType AS VARRAY(3) OF VARCHAR2(13);

The creation of an array type does not allocate space but instead defines a data type
that can be used as:

* the data type of a column of a relational table;

* an object type attribute;

* a PL/SQL variable, parameter, or function return type.

335

336

Chapter 9 Object-Relational DBMSs

For example, we could modify the type BranchType to include an attribute of this
new type:

phonelList TelNoArrayType,

An array is normally stored inline, that is, in the same tablespace as the other data
in its row. If it is sufficiently large, however, Oracle stores it as a BLOB.

Nested tables A nested table is an unordered set of data elements that are all of
the same data type. It has a single column of a built-in type or an object type. If the
column is an object type, the table can also be viewed as a multicolumn table, with
a column for each attribute of the object type. For example, to model next-of-kin
for members of staff, we may define a new type as follows:

CREATE TYPE NextOfKinType AS OBJECT (
fName VARCHARZ2(15),
IName VARCHARZ2(15),
telNo VARCHARZ2(13));
CREATE TYPE NextOfkinNestedType AS TABLE OF NextOfKinType;

We can now modify the type StaffType to include this new type as a nested table:
nextOfKin NextOfKinNestedType,

and create a table for staff using the following statement:

CREATE TABLE Staff OF StaffType (
PRIMARY KEY staffNo)
OBJECT IDENTIFIER IS PRIMARY KEY
NESTED TABLE nextOfKin STORE AS NextOfKinStorageTable (
(PRIMARY KEY(Nested_Table_Id, IName, teINo))
ORGANIZATION INDEX COMPRESS)
RETURN AS LOCATOR;

The rows of a nested table are stored in a separate storage table that cannot be
directly queried by the user but can be referenced in DDL statements for mainte-
nance purposes. A hidden column in this storage table, Nested_Table_Id, matches the
rows with their corresponding parent row. All the elements of the nested table of a
given row of Staff have the same value of Nested_Table_Id and elements that belong
to a different row of Staff have a different value of Nested_Table_Id.

We have indicated that the rows of the nextOfKin nested table are to be stored in a
separate storage table called NextOfKinStorageTable. In the STORE AS clause, we have
also specified that the storage table is index-organized (ORGANIZATION INDEX),
to cluster rows belonging to the same parent. We have specified COMPRESS so that
the Nested_Table_ld part of the index key is stored only once for each row of a parent
row rather than being repeated for every row of a parent row object.

The specification of Nested_Table_Id and the given attributes as the primary key
for the storage table serves two purposes: it serves as the key for the index and it
enforces uniqueness of the columns (IName, telNo) of a nested table within each row
of the parent table. By including these columns in the key, the statement ensures
that the columns contain distinct values within each member of staff.

9.6 Object-Oriented Extensions in Oracle

In Oracle, the collection-typed value is encapsulated. Consequently, a user must
access the contents of a collection via interfaces provided by Oracle. Generally,
when the user accesses a nested table, Oracle returns the entire collection value to
the user’s client process. This may have performance implications, and so Oracle
supports the ability to return a nested table value as a locator, which is like a han-
dle to the collection value. The RETURN AS LOCATOR clause indicates that the
nested table is to be returned in the locator form when retrieved. If this is not
specified, the default is VALUE, which indicates that the entire nested table is to be
returned instead of just a locator to the nested table.

Nested tables differ from arrays in the following ways:

+ Arrays have a maximum size, but nested tables do not.

+ Arrays are always dense, but nested tables can be sparse, and so individual ele-
ments can be deleted from a nested table but not from an array.

+ Oracle stores array data inline (in the same tablespace) but stores nested table
data out of line in a store table, which is a system-generated database table associ-
ated with the nested table.

+ When stored in the database, arrays retain their ordering and subscripts, but
nested tables do not.

9.6.2 Manipulating Object Tables

In this section we briefly discuss how to manipulate object tables using the sample
objects created previously for illustration. For example, we can insert objects into
the Staff table as follows:

INSERT INTO Staff VALUES (‘'SG37’, ‘Ann’, ‘Beech’, ‘Assistant’, ‘F’, ‘10-Nov-
1960, 12000, NextOfKinNestedType());

INSERT INTO Staff VALUES (‘SG5’, ‘Susan’, ‘Brand’, ‘Manager’, ‘F’, ‘3-Jun-
1940, 24000, NextOfKinNestedType());

The expression NextOfKinNestedType() invokes the constructor method for this type
to create an empty nextOfKin attribute. We can insert data into the nested table using
the following statement:

INSERT INTO TABLE (SELECT s.nextOfKin
FROM Staff s
WHERE s.staffNo = ‘SG5’)
VALUES (‘John’, ‘Brand’, ‘0141-848-2000’);

This statement uses a TABLE expression to identify the nested table as the target
for the insertion, namely the nested table in the nextOfKin column of the row object
in the Staff table that has a staffNo of ‘SG5’. Finally, we can insert an object into the
Branch table:

INSERT INTO Branch
SELECT ‘B003’, AddressType(‘163 Main St’, ‘Glasgow’, ‘G11 9QX’), REF(s),
TelNoArrayType(‘0141-339-2178’, ‘0141-339-4439’)
FROM Staff s
WHERE s.staffNo = ‘SG5’;

337

338

Chapter 9 Object-Relational DBMSs

or alternatively:

INSERT INTO Branch VALUES (‘B003’, AddressType(‘163 Main St’, ‘Glasgow’,
‘G11 9QX’), (SELECT REF(s) FROM Staff s WHERE s.staifNo = ‘SG5’),
TelNoArrayType(‘0141-339-2178’, ‘0141-339-4439"));

Querying object tables In Oracle, we can return an ordered list of branch num-
bers using the following query:

SELECT b.branchNo
FROM Branch b
ORDER BY VALUE(b);

This query implicitly invokes the comparison method getoranchNo that we
defined as a map method for the type BranchType to order the data in ascending
order of branchNo. We can return all the data for each branch using the follow-

ing query:

SELECT b.branchNo, b.address, DEREF(b.manager), b.phoneList
FROM Branch b

WHERE b.address.city = ‘Glasgow’

ORDER BY VALUE(b);

Note the use of the DEREF operator to access the manager object. This query writes
out the values for the branchNo column, all columns of an address, all columns of the
manager object (of type StaffType), and all relevant telephone numbers.

We can retrieve next of kin data for all staff at a specified branch using the fol-
lowing query:

SELECT b.branchNo, b.manager.staffNo, n.*
FROM Branch b, TABLE(b.manager.nextOfKin) n
WHERE b.branchNo = ‘B003’;

Many applications are unable to handle collection types and instead require a flat-
tened view of the data. In this example, we have flattened (or unnested) the nested
set using the TABLE keyword. Note also that the expression b.manager.staffNo is a
shorthand notation for y.staffiNo where y = DEREF (b.manager).

9.6.3 Object Views

In Sections 4.4 and 7.4 we examined the concept of views. In much the same
way that a view is a virtual table, an object view is a virtual object table. Object
views allow the data to be customized for different users. For example, we may
create a view of the Staff table to prevent some users from seeing sensitive per-
sonal or salary-related information. In Oracle, we may now create an object view
that not only restricts access to some data but also prevents some methods from
being invoked, such as a delete method. It has also been argued that object views
provide a simple migration path from a purely relational-based application to
an object-oriented one, thereby allowing companies to experiment with this new
technology.

9.6 Object-Oriented Extensions in Oracle | 339

For example, assume that we have created the object types defined in Section

9.6.1 and assume that we have created and populated the following relational A
ﬁﬁ

schema for DreamHome with associated structured types BranchType and StaffType:

Branch (branchNo, street, city, postcode, mgrStaffNo) V
Telephone (telNo, branchNo)
Staff (staffNo, fName, IName, position, sex, DOB, salary, branchNo)

NextOfKin (staffNo, fName, IName, teINo)

We could create an object-relational schema using the object view mechanism as
follows:

CREATE VIEW staffView OF StaffType WITH OBJECT IDENTIFIER (staffNo) AS
SELECT s.staffNo, s.fName, s.IName, s.sex, s.position, s.DOB, s.salary,
CAST (MULTISET (SELECT n.fName, n.IName, n.telNo
FROM NextOfKin n WHERE n.staffNo = s.staffNo)
AS NextOfKinNestedType) AS nextOfKin
FROM Staff s;
CREATE VIEW BranchView OF BranchType WITH OBJECT IDENTIFIER
(branchNo) AS
SELECT b.branchNo, AddressType(b.street, b.city, b.postcode) AS address,
MAKE_REF(StaffView, b.mgrStaffNo) AS manager,
CAST (MULTISET (SELECT telNo FROM Telephone t
WHERE t.branchNo = b.branchNo) AS TelNoArrayType) AS phoneList
FROM Branch b;

In each case, the SELECT subquery inside the CAST/MULTISET expression
selects the data we require (in the first case, a list of next of kin for the member
of staff and in the second case, a list of telephone numbers for the branch). The
MULTISET keyword indicates that this is a list rather than a singleton value, and
the CAST operator then casts this list to the required type. Note also the use of the
MAKE_REF operator, which creates a REF to a row of an object view or a row in an
object table whose object identifier is primary-key based.

The WITH OBJECT IDENTIFIER specifies the attributes of the object type
that will be used as a key to identify each row in the object view. In most cases,
these attributes correspond to the primary key columns of the base table. The
specified attributes must be unique and identify exactly one row in the view. If
the object view is defined on an object table or an object view, this clause can be
omitted or WITH OBJECT IDENTIFIER DEFAULT can be specified. In each
case, we have specified the primary key of the corresponding base table to provide
uniqueness.

9.6.4 Privileges
Oracle defines the following system privileges for user-defined types:

« CREATE TYPE - to create user-defined types in the user’s schema;
« CREATE ANY TYPE - to create user-defined types in any schema;
« ALTER ANY TYPE - to alter user-defined types in any schema;

340 Chapter 9 Object-Relational DBMSs

« DROP ANY TYPE - to drop named types in any schema;

« EXECUTE ANY TYPE - to use and reference named types in any schema;

- UNDER ANY TYPE - to create subtypes under any non-final object types;

- UNDER ANY VIEW - to create subviews under any object view.

In addition, the EXECUTE schema object privilege allows a user to use the type to

define a table, define a column in a relational table, declare a variable or parameter
of the named type, and to invoke the type’s methods.

Chapter Summary

Advanced database applications include computer-aided design (CAD), computer-aided manufacturing (CAM),
computer-aided software engineering (CASE), network management systems, office information systems (OIS)
and multimedia systems, digital publishing, geographic information systems (GIS), and interactive and dynamic
Web sites, as well as applications with complex and interrelated objects and procedural data.

The relational model, and relational systems in particular, have weaknesses such as poor representation of *“real-
world" entities, semantic overloading, poor support for integrity and enterprise constraints, limited operations,
and impedance mismatch. The limited modeling capabilities of relational DBMSs have made them unsuitable for
advanced database applications.

There is no single extended relational data model; rather, there are a variety of these models, whose character-
istics depend upon the way and the degree to which extensions were made. However, all the models do share
the same basic relational tables and query language, all incorporate some concept of “object,” and some have the
ability to store methods or procedures/triggers as well as data in the database.

Various terms have been used for systems that have extended the relational data model. The original term used
to describe such systems was the Extended Relational DBMS (ERDBMS), and the term Universal Server or Universal
DBMS (UDBMS) has also been used. However, in recent years, the more descriptive term Object-Relational
DBMS (ORDBMS) has been used to indicate that the system incorporates some notion of “object.”

Since 1999, the SQL standard includes object management extensions for: row types, user-defined types (UDTs)
and user-defined routines (UDRs), polymorphism, inheritance, reference types and object identity, collection types
(ARRAYS), new language constructs that make SQL computationally complete, triggers, and support for large
objects—-Binary Large Objects (BLOBs) and Character Large Objects (CLOBs)—and recursion.

Review Questions

9.1 Discuss the general characteristics of advanced database applications.

9.2 Discuss why the weaknesses of the relational data model and relational DBMSs may make them unsuitable for

advanced database applications.

9.3 Describe strategies used in ORDB designs to map classes to relations.

9.4 What functionality would typically be provided by an ORDBMS?

9.5 Compare and contrast the different collection types.

9.6 What is a typed table? How is it different from other table types?

9.7 Discuss how references types and object identity can be used.

Exercises

9.8 Compare and contrast procedures, functions, and methods.

9.9 Discuss the extensions required for query processing and query optimization to fully support
the ORDBMS.

9.10 Discuss the collection types available in SQL:201 I.

9.11 What are the security problems associated with the introduction of user-defined methods?
Suggest some solutions to these problems.

Exercises

9.12 Investigate one of the advanced database applications discussed in Section 9.1, or a similar
one that handles complex, interrelated data. In particular, examine its functionality and the
data types and operations it uses. Map the data types and operations to the object-oriented
concepts discussed in Appendix K.

9.13 Analyze one of the RDBMSs that you currently use. Discuss the object-oriented features
provided by the system. What additional functionality do these features provide?

9.14 Analyze the RDBMSs that you are currently using. Discuss the object-oriented facilities pro-
vided by the system. What additional functionality do these facilities provide?

9.15 Discuss key issues to consider when converting a relational database to an object relational

database.

9.16 DreamHome has contracted you to help them with changing their system from a relational @
database to an object relational database. Produce a presentation highlighting the approaches A4
and key processes that will be involved.

9.17 Create an insert trigger that sets up a mailshot table recording the names and addresses of all
guests who have stayed at the hotel during the days before and after New Year for the past
two years.

9.18 Investigate the relational schema and object relational schema used in the EasyDrive School of

Motoring case study. What are the key differences between the two? A
i

9.19 Create an object-relational schema for the DreamHome case study documented in Appendix A.
Add user-defined functions that you consider appropriate. Implement the queries listed in A4
Appendix A using SOL201 .

9.20 Create an object-relational schema for the University Accommodation Office case study
documented in Appendix B.|. Add user-defined functions that you consider appropriate.

9.21 Create an object-relational schema for the EasyDrive School of Motoring case study
documented in Appendix B.2. Add user-defined functions that you consider appropriate.

9.22 Create an object-relational schema for the Wellmeadows case study documented in Appen-
dix B.3. Add user-defined functions that you consider appropriate.

9.23 You have been asked by the Managing Director of DreamHome to investigate and prepare @
v

a report on the applicability of an object-relational DBMS for the organization. The

report should compare the technology of the RDBMS with that of the ORDBMS, and
should address the advantages and disadvantages of implementing an ORDBMS within

the organization, and any perceived problem areas. The report should also consider the
applicability of an object-oriented DBMS, and a comparison of the two types of system
for DreamHome should be included. Finally, the report should contain a fully justified set of
conclusions on the applicability of the ORDBMS for DreamHome.

341

PART

Database Analysis
and Design

Chapter

Chapter

Chapter
Chapter

Chapter
Chapter

10

12
13

14
15

Database System Development
Lifecycle

Database Analysis and the
DreamHome Case Study

Entity—Relationship Modeling

Enhanced Entity—Relationship
Modeling

Normalization

Advanced Normalization

345

375

405

433
451
481

343

CHAPTER

I O Database System Development
Lifecycle

Chapter Objectives
In this chapter you will learn:

* The main components of an information system.

* The main stages of the database system development lifecycle (DSDLC).

* The main phases of database design: conceptual, logical, and physical design.
* The types of criteria used to evaluate a DBMS.

* How to evaluate and select a DBMS.

* The benefits of Computer-Aided Software Engineering (CASE) tools.

Software has now surpassed hardware as the key to the success of many computer-
based systems. Unfortunately, the track record for developing software is not par-
ticularly impressive. The last few decades have seen the proliferation of software
applications ranging from small, relatively simple applications consisting of a few
lines of code to large, complex applications consisting of millions of lines of code.
Many of these applications have required constant maintenance. This maintenance
involved correcting faults that had been detected, implementing new user require-
ments, and modifying the software to run on new or upgraded platforms. The effort
spent on maintenance began to absorb resources at an alarming rate. As a result,
many major software projects were late, over budget, unreliable, and difficult to
maintain, and performed poorly. These issues led to what has become known as the
software crisis. Although this term was first used in the late 1960s, the crisis is still
with us. As a result, some authors now refer to the software crisis as the software
depression. As an indication of the crisis, a study carried out in the UK by OASIG,
a Special Interest Group concerned with the Organizational Aspects of I'T, reached
the following conclusions about software projects (OASIG, 1996):

+ 80-90% do not meet their performance goals;
- about 80% are delivered late and over budget;

« around 40% fail or are abandoned;

« under 40% fully address training and skills requirements;

345

346

Chapter 10 Database System Development Lifecycle

« less than 25% properly integrate enterprise and technology objectives;
« just 10-20% meet all their success criteria.

There are several major reasons for the failure of software projects, including:

« lack of a complete requirements specification;
+ lack of an appropriate development methodology;

+ poor decomposition of design into manageable components.

As a solution to these problems, a structured approach to the development of
software was proposed called the Information Systems Lifecycle (ISLC) or the
Software Development Lifecycle (SDLC). However, when the software being
developed is a database system the lifecycle is more specifically referred to as the
Database System Development Lifecycle (DSDLC).

Structure of this Chapter In Section 10.1 we briefly describe the in-
formation systems lifecycle and discuss how this lifecycle relates to the database
system development lifecycle. In Section 10.2 we present an overview of the
stages of the database system development lifecycle. In Sections 10.3 to 10.13
we describe each stage of the lifecycle in more detail. In Section 10.14 we dis-
cuss how Computer-Aided Software Engineering (CASE) tools can provide sup-
port for the database system development lifecycle.

10.1 The Information Systems Lifecycle

|

Information The resources that enable the collection, management, control,
system and dissemination of information throughout an organization.

Since the 1970s, database systems have been gradually replacing file-based systems
as part of an organization’s Information Systems (IS) infrastructure. At the same
time, there has been a growing recognition that data is an important corporate
resource that should be treated with respect, like all other organizational resources.
This resulted in many organizations establishing whole departments or functional
areas called Data Administration (DA) and Database Administration (DBA) that are
responsible for the management and control of the corporate data and the corpo-
rate database, respectively.

A computer-based information system includes a database, database software, appli-
cation software, computer hardware, and personnel using and developing the system.

The database is a fundamental component of an information system, and its devel-
opment and usage should be viewed from the perspective of the wider requirements
of the organization. Therefore, the lifecycle of an organization’s information system
is inherently linked to the lifecycle of the database system that supports it.
Typically, the stages in the lifecycle of an information system include: planning,
requirements collection and analysis, design, prototyping, implementation, testing,
conversion, and operational maintenance. In this chapter we review these stages

10.3 Database Planning

from the perspective of developing a database system. However, it is important to
note that the development of a database system should also be viewed from the
broader perspective of developing a component part of the larger organization-
wide information system.

Throughout this chapter we use the terms “functional area” and “application
area” to refer to particular enterprise activities within an organization such as mar-
keting, personnel, and stock control.

10.2 The Database System Development Lifecycle

|

As a database system is a fundamental component of the larger organization-wide
information system, the database system development lifecycle is inherently associ-
ated with the lifecycle of the information system. The stages of the database system
development lifecycle are shown in Figure 10.1. Below the name of each stage is
the section in this chapter that describes that stage.

It is important to recognize that the stages of the database system development
lifecycle are not strictly sequential, but involve some amount of repetition of pre-
vious stages through feedback loops. For example, problems encountered during
database design may necessitate additional requirements collection and analysis.
As there are feedback loops between most stages, we show only some of the more
obvious ones in Figure 10.1. A summary of the main activities associated with each
stage of the database system development lifecycle is described in Table 10.1.

For small database systems, with a small number of users, the lifecycle need not
be very complex. However, when designing a medium to large database systems
with tens to thousands of users, using hundreds of queries and application pro-
grams, the lifecycle can become extremely complex. Throughout this chapter,
we concentrate on activities associated with the development of medium to large
database systems. In the following sections we describe the main activities associated
with each stage of the database system development lifecycle in more detail.

[}

[}

H .

= 10.3 Database Planning

-,
Datab. The management activities that allow the stages of the database sys-

Iata ase tem development lifecycle to be realized as efficiently and effectively

planning

as possible.

Database planning must be integrated with the overall IS strategy of the organiza-
tion. There are three main issues involved in formulating an IS strategy, which are:

+ identification of enterprise plans and goals with subsequent determination of
information systems needs;

+ evaluation of current information systems to determine existing strengths and
weaknesses;

« appraisal of I'T opportunities that might yield competitive advantage.
The methodologies used to resolve these issues are outside the scope of this book;

however, the interested reader is referred to Robson (1997) and Cadle & Yeates
(2007) for a fuller discussion.

347

348

> Database planning
(Section 10.3)

v

System definition
(Section 10.4)

v

Requirements collection

and analysis
(Section 10.5)

DBMS selection
(Section 10.7)

Database design
(Section 10.6) v

Conceptual database
design

v

Logical database
design

v

Physical database
design

Prototyping (optional)
(Section 10.9)

v

> Application design

(Section 10.8)

Implementation
(Section 10.10)

v

Data conversion
and loading
(Section 10.11)

v

Testing
(Section 10.12)

v

Figure 10.1 The stages of the database system development lifecycle.

Operational maintenance
(Section 10.13)

TABLE 10.1
lifecycle.

STAGE

Database planning

System definition
Requirements collection and
analysis

Database design

DBMS selection

Application design

Prototyping (optional)

Implementation

Data conversion and loading

Testing

Operational maintenance

10.3 Database Planning 349

Summary of the main activities associated with each stage of the database system development

MAIN ACTIVITIES

Planning how the stages of the lifecycle can be realized most efficiently and effectively.

Specifying the scope and boundaries of the database system, including the major user
views, its users, and application areas.

Collection and analysis of the requirements for the new database system.

Conceptual, logical, and physical design of the database.
Selecting a suitable DBMS for the database system.

Designing the user interface and the application programs that use and process the
database.

Building a working model of the database system, which allows the designers or users
to visualize and evaluate how the final system will look and function.

Creating the physical database definitions and the application programs.

Loading data from the old system to the new system and, where possible, converting
any existing applications to run on the new database.

Database system is tested for errors and validated against the requirements specified
by the users.

Database system is fully implemented. The system is continuously monitored and

maintained. When necessary, new requirements are incorporated into the database

system through the preceding stages of the lifecycle.

An important first step in database planning is to clearly define the mission state-
ment for the database system. The mission statement defines the major aims of the
database system. Those driving the database project within the organization (such
as the Director and/or owner) normally define the mission statement. A mission
statement helps to clarify the purpose of the database system and provide a clearer
path towards the efficient and effective creation of the required database system.
Once the mission statement is defined, the next activity involves identifying the
mission objectives. Each mission objective should identify a particular task that the
database system must support. The assumption is that if the database system sup-
ports the mission objectives, then the mission statement should be met. The mission
statement and objectives may be accompanied by some additional information that
specifies in general terms the work to be done, the resources with which to do it,
and the money to pay for it all. We demonstrate the creation of a mission statement
and mission objectives for the database system of DreamHome in Section 11.4.2.

Database planning should also include the development of standards that gov-
ern how data will be collected, how the format should be specified, what docu-
mentation will be needed, and how design and implementation should proceed.
Standards can be very time-consuming to develop and maintain, requiring
resources to set them up initially, and to continue maintaining them. However, a
well-designed set of standards provides a basis for training staff and measuring

350

Chapter 10 Database System Development Lifecycle

quality control, and can ensure that work conforms to a pattern, irrespective of
staft skills and experience. For example, specific rules may govern how data items
can be named in the data dictionary, which in turn may prevent both redundancy
and inconsistency. Any legal or enterprise requirements concerning the data should
be documented, such as the stipulation that some types of data must be treated
confidentially.

= 10.4 System Definition

[S
System Describes the scope and boundaries of the database system and the
definition major user views.

Before attempting to design a database system, it is essential that we first identify
the boundaries of the system that we are investigating and how it interfaces with
other parts of the organization’s information system. It is important that we include
within our system boundaries not only the current users and application areas, but
also future users and applications. We present a diagram that represents the scope
and boundaries of the DreamHome database system in Figure 11.10. Included within
the scope and boundary of the database system are the major user views that are to
be supported by the database.

10.4.1 User Views

Defines what is required of a database system from the perspective
User view of a particular job role (such as Manager or Supervisor) or enterprise
application area (such as marketing, personnel, or stock control).

A database system may have one or more user views. Identifying user views is an
important aspect of developing a database system because it helps to ensure that no
major users of the database are forgotten when developing the requirements for the
new database system. User views are also particularly helpful in the development
of a relatively complex database system by allowing the requirements to be broken
down into manageable pieces.

A user view defines what is required of a database system in terms of the data to be
held and the transactions to be performed on the data (in other words, what the users
will do with the data). The requirements of a user view may be distinct to that view
or overlap with other views. Figure 10.2 is a diagrammatic representation of a data-
base system with multiple user views (denoted user view 1 to 6). Note that whereas
user views (1, 2, and 3) and (5 and 6) have overlapping requirements (shown as
hatched areas), user view 4 has distinct requirements.

10.5 Requirements Collection and Analysis

[

The process of collecting and analyzing information about the
part of the organization that is to be supported by the database
system, and using this information to identify the requirements
for the new system.

Requirements
collection and
analysis

10.5 Requirements Collection and Analysis

Database

Database system

Figure 10.2 Representation of a database system with multiple user views: user views (1, 2,
and 3) and (5 and 6) have overlapping requirements (shown as hatched areas), whereas user
view 4 has distinct requirements.

This stage involves the collection and analysis of information about the part of the
enterprise to be served by the database. There are many techniques for gather-
ing this information, called fact-finding techniques, which we discuss in detail in
Chapter 11. Information is gathered for each major user view (that is, job role or
enterprise application area), including:

+ a description of the data used or generated;
« the details of how data is to be used or generated,;

- any additional requirements for the new database system.

This information is then analyzed to identify the requirements (or features) to be
included in the new database system. These requirements are described in docu-
ments collectively referred to as requirements specifications for the new database
system.

Requirements collection and analysis is a preliminary stage to database design.
The amount of data gathered depends on the nature of the problem and the poli-
cies of the enterprise. Too much study too soon leads to paralysis by analysis. Too
little thought can result in an unnecessary waste of both time and money due to
working on the wrong solution to the wrong problem.

The information collected at this stage may be poorly structured and include some
informal requests, which must be converted into a more structured statement of

351

352

Chapter 10 Database System Development Lifecycle

requirements. This is achieved using requirements specification techniques, which
include, for example, Structured Analysis and Design (SAD) techniques, Data Flow
Diagrams (DFD), and Hierarchical Input Process Output (HIPO) charts supported by
documentation. As you will see shortly, Computer-Aided Software Engineering (CASE)
tools may provide automated assistance to ensure that the requirements are complete
and consistent. In Section 27.8 we will discuss how the Unified Modeling Language
(UML) supports requirements analysis and design.

Identifying the required functionality for a database system is a critical activity, as
systems with inadequate or incomplete functionality will annoy the users, which may
lead to rejection or underutilization of the system. However, excessive functionality
can also be problematic, as it can overcomplicate a system, making it difficult to
implement, maintain, use, or learn.

Another important activity associated with this stage is deciding how to deal with
the situation in which there is more than one user view for the database system.
There are three main approaches to managing the requirements of a database sys-
tem with multiple user views:

- the centralized approach;
- the view integration approach;

- a combination of both approaches.

10.5.1 Centralized Approach

Requirements for each user view are merged into a single set of
requirements for the new database system. A data model repre-
senting all user views is created during the database design stage.

Centralized
approach

The centralized (or one-shot) approach involves collating the requirements for
different user views into a single list of requirements. The collection of user views
is given a name that provides some indication of the application area covered by
all the merged user views. In the database design stage (see Section 10.6), a global
data model is created, which represents all user views. The global data model is
composed of diagrams and documentation that formally describe the data require-
ments of the users. A diagram representing the management of user views 1 to 3
using the centralized approach is shown in Figure 10.3. Generally, this approach
is preferred when there is a significant overlap in requirements for each user view
and the database system is not overly complex.

10.5.2 View Integration Approach

View Requirements for each user view remain as separate lists. Data
integration models representing each user view are created and then merged
approach later during the database design stage.

The view integration approach involves leaving the requirements for each user view
as separate lists of requirements. In the database design stage (see Section 10.6), we

10.5 Requirements Collection and Analysis 353

User view 1

requirements \

ER model
R e —_» > —
+
User view 2 All user view

requirements requirements

- | » ﬁ Relations, data dictionary,
and other supporting
User view 3 documentation

requirements

Global data
model

Figure 10.3 The centralized approach to managing multiple user views | to 3.

first create a data model for each user view. A data model that represents a single
user view (or a subset of all user views) is called a local data model. Each model is
composed of diagrams and documentation that formally describes the requirements
of one or more—but not all—user views of the database. The local data models are
then merged at a later stage of database design to produce a global data model,
which represents all user requirements for the database. A diagram representing
the management of user views 1 to 3 using the view integration approach is shown
in Figure 10.4. Generally, this approach is preferred when there are significant dif-
ferences between user views and the database system is sufficiently complex to justify
dividing the work into more manageable parts. We demonstrate how to use the view
integration approach in Chapter 17, Step 2.6.

For some complex database systems, it may be appropriate to use a combina-
tion of both the centralized and view integration approaches to manage multiple
user views. For example, the requirements for two or more user views may be first
merged using the centralized approach, which is used to build a local logical data
model. This model can then be merged with other local logical data models using
the view integration approach to produce a global logical data model. In this case,
each local logical data model represents the requirements of two or more user views
and the final global logical data model represents the requirements of all user views
of the database system.

We discuss how to manage multiple user views in more detail in Section 11.4.4,
and using the methodology described in this book, we demonstrate how to build a
database for the DreamHome property rental case study using a combination of the
centralized and view integration approaches.

Database
system

354

Chapter 10 Database System Development Lifecycle

iy

User view 1
requirements

iy

User view 2
requirements

‘ T ﬁ T
User view 3

requirements

B]
+
- \
User view 1 \
ER model
- + R EE—
+
User view 2
Relations, data dictionary,
and other supporting
documentation
/ Global data model
+ /
-
User view 3

Local data models

Figure 10.4 The view integration approach to managing multiple user views | to 3.

-

Database
design

10.6 Database Design

Da
system

The process of creating a design that will support the enterprise’s mis-
sion statement and mission objectives for the required database system.

In this section we present an overview of the main approaches to database design.
We also discuss the purpose and use of data modeling in database design. We then
describe the three phases of database design: conceptual, logical, and physical

design.

10.6 Database Design

10.6.1 Approaches to Database Design

The two main approaches to the design of a database are referred to as “bottom-
up” and “top-down.” The bottom-up approach begins at the fundamental level of
attributes (that is, properties of entities and relationships), which through analysis
of the associations between attributes are grouped into relations that represent
types of entities and relationships between entities. In Chapters 14 and 15 we dis-
cuss the process of normalization, which represents a bottom-up approach to data-
base design. Normalization involves the identification of the required attributes
and their subsequent aggregation into normalized relations based on functional
dependencies between the attributes.

The bottom-up approach is appropriate for the design of simple databases with
a relatively small number of attributes. However, this approach becomes difficult
when applied to the design of more complex databases with a larger number of
attributes, where it is difficult to establish all the functional dependencies between
the attributes. As the conceptual and logical data models for complex databases
may contain hundreds to thousands of attributes, it is essential to establish an
approach that will simplify the design process. Also, in the initial stages of establish-
ing the data requirements for a complex database, it may be difficult to establish all
the attributes to be included in the data models.

A more appropriate strategy for the design of complex databases is to use the
top-down approach. This approach starts with the development of data models
that contain a few high-level entities and relationships and then applies successive
top-down refinements to identify lower-level entities, relationships, and the asso-
ciated attributes. The top-down approach is illustrated using the concepts of the
Entity-Relationship (ER) model, beginning with the identification of entities and
relationships between the entities, which are of interest to the organization. For
example, we may begin by identifying the entities PrivateOwner and PropertyForRent,
and then the relationship between these entities, PrivateOwner Owns PropertyForRent,
and finally the associated attributes such as PrivateOwner (ownerNo, name, and address)
and PropertyForRent (propertyNo and address). Building a high-level data model using
the concepts of the ER model is discussed in Chapters 12 and 13.

There are other approaches to database design, such as the inside-out approach
and the mixed strategy approach. The inside-out approach is related to the bot-
tom-up approach, but differs by first identifying a set of major entities and then
spreading out to consider other entities, relationships, and attributes associated
with those first identified. The mixed strategy approach uses both the bottom-up
and top-down approach for various parts of the model before finally combining all
parts together.

10.6.2 Data Modeling

The two main purposes of data modeling are to assist in the understanding of the
meaning (semantics) of the data and to facilitate communication about the informa-
tion requirements. Building a data model requires answering questions about enti-
ties, relationships, and attributes. In doing so, the designers discover the semantics
of the enterprise’s data, which exist whether or not they happen to be recorded
in a formal data model. Entities, relationships, and attributes are fundamental to

355

356 Chapter 10 Database System Development Lifecycle

all enterprises. However, their meaning may remain poorly understood until they
have been correctly documented. A data model makes it easier to understand the
meaning of the data, and thus we model data to ensure that we understand:

- each user’s perspective of the data;
- the nature of the data itself, independent of its physical representations;

+ the use of data across user views.

Data models can be used to convey the designer’s understanding of the information
requirements of the enterprise. Provided both parties are familiar with the notation
used in the model, it will support communication between the users and designers.
Increasingly, enterprises are standardizing the way that they model data by select-
ing a particular approach to data modeling and using it throughout their database
development projects. The most popular high-level data model used in database
design, and the one we use in this book, is based on the concepts of the ER model.
We describe ER modeling in detail in Chapters 12 and 13.

Criteria for data models

An optimal data model should satisfy the criteria listed in Table 10.2 (Fleming
and Von Halle, 1989). However, sometimes these criteria are incompatible with
each other and trade-offs are sometimes necessary. For example, in attempting to
achieve greater expressibility in a data model, we may lose simplicity.

10.6.3 Phases of Database Design

Database design is made up of three main phases: conceptual, logical, and physical
design.

Conceptual database design

Conceptual The process of constructing a model of the data used in an
database design enterprise, independent of all physical considerations.

TABLE 10.2 The criteria to produce an optimal data model.

Structural validity
Simplicity
Expressibility

Nonredundancy

Shareability
Extensibility
Integrity

Diagrammatic
representation

Consistency with the way the enterprise defines and organizes information.
Ease of understanding by IS professionals and nontechnical users.
Ability to distinguish between different data, relationships between data, and constraints.

Exclusion of extraneous information; in particular, the representation of any one piece of
information exactly once.

Not specific to any particular application or technology and thereby usable by many.
Ability to evolve to support new requirements with minimal effect on existing users.
Consistency with the way the enterprise uses and manages information.

Ability to represent a model using an easily understood diagrammatic notation.

10.6 Data Design

The first phase of database design is called conceptual database design and
involves the creation of a conceptual data model of the part of the enterprise that
we are interested in modeling. The data model is built using the information
documented in the users’ requirements specification. Conceptual database design is
entirely independent of implementation details such as the target DBMS software,
application programs, programming languages, hardware platform, or any other
physical considerations. In Chapter 16, we present a practical step-by-step guide on
how to perform conceptual database design.

Throughout the process of developing a conceptual data model, the model is
tested and validated against the users’ requirements. The conceptual data model of
the enterprise is a source of information for the next phase, namely logical database
design.

Logical database design

Logical The process of constructing a model of the data used in an enterprise
database based on a specific data model, but independent of a particular DBMS
design and other physical considerations.

The second phase of database design is called logical database design, which
results in the creation of a logical data model of the part of the enterprise that
we interested in modeling. The conceptual data model created in the previous
phase is refined and mapped onto a logical data model. The logical data model is
based on the target data model for the database (for example, the relational data
model).

Whereas a conceptual data model is independent of all physical considerations,
a logical model is derived knowing the underlying data model of the target DBMS.
In other words, we know that the DBMS is, for example, relational, network,
hierarchical, or object-oriented. However, we ignore any other aspects of the cho-
sen DBMS and, in particular, any physical details, such as storage structures or
indexes.

Throughout the process of developing a logical data model, the model is tested
and validated against the users’ requirements. The technique of normalization is
used to test the correctness of a logical data model. Normalization ensures that the
relations derived from the data model do not display data redundancy, which can
cause update anomalies when implemented. In Chapter 14 we illustrate the prob-
lems associated with data redundancy and describe the process of normalization in
detail. The logical data model should also be examined to ensure that it supports
the transactions specified by the users.

The logical data model is a source of information for the next phase, namely
physical database design, providing the physical database designer with a vehicle
for making trade-offs that are very important to efficient database design. The logi-
cal model also serves an important role during the operational maintenance stage
of the database system development lifecycle. Properly maintained and kept up to
date, the data model allows future changes to application programs or data to be
accurately and efficiently represented by the database.

In Chapter 17 we present a practical step-by-step guide for logical database
design.

357

358 Chapter 10 Database System Development Lifecycle

Physical database design

The process of producing a description of the implementation of

Physical . . .

y the database on secondary storage; it describes the base relations,
database
At file organizations, and indexes used to achieve efficient access to the

data, and any associated integrity constraints and security measures.

Physical database design is the third and final phase of the database design pro-
cess, during which the designer decides how the database is to be implemented.
The previous phase of database design involved the development of a logical
structure for the database, which describes relations and enterprise constraints.
Although this structure is DBMS-independent, it is developed in accordance with
a particular data model, such as the relational, network, or hierarchic. However, in
developing the physical database design, we must first identify the target DBMS.
Therefore, physical design is tailored to a specific DBMS system. There is feedback
between physical and logical design, because decisions are taken during physical
design for improving performance that may affect the structure of the logical data
model.

In general, the main aim of physical database design is to describe how we intend
to physically implement the logical database design. For the relational model, this
involves:

- creating a set of relational tables and the constraints on these tables from the
information presented in the logical data model;

- identifying the specific storage structures and access methods for the data to
achieve an optimum performance for the database system;

- designing security protection for the system.

Ideally, conceptual and logical database design for larger systems should be sepa-
rated from physical design for three main reasons:

- it deals with a different subject matter—the what, not the how;

- it is performed at a different time—the what must be understood before the how
can be determined;

« it requires different skills, which are often found in different people.

Database design is an iterative process that has a starting point and an almost
endless procession of refinements. They should be viewed as learning processes.
As the designers come to understand the workings of the enterprise and the
meanings of its data, and express that understanding in the selected data models,
the information gained may well necessitate changes to other parts of the design.
In particular, conceptual and logical database designs are critical to the overall
success of the system. If the designs are not a true representation of the enter-
prise, it will be difficult, if not impossible, to define all the required user views or
to maintain database integrity. It may even prove difficult to define the physical
implementation or to maintain acceptable system performance. On the other
hand, the ability to adjust to change is one hallmark of good database design.
Therefore, it is worthwhile spending the time and energy necessary to produce

the best possible design.

10.7 DBMS Selection 359

External A
schema
I Logical/conceptual database design
Conceptual
schema

y
A

Internal
schema
I Physical database design
Physical
storage v

In Chapter 2, we discussed the three-level ANSI-SPARC architecture for a data-
base system, consisting of external, conceptual, and internal schemas. Figure 10.5
illustrates the correspondence between this architecture and conceptual, logical,
and physical database design. In Chapters 18 and 19 we present a step-by-step
methodology for the physical database design phase.

10.7 DBMS Selection

[

The selection of an appropriate DBMS to support the database

DBMS selection ‘
system.

If no DBMS exists, an appropriate part of the lifecycle in which to make a selection
is between the conceptual and logical database design phases (see Figure 10.1).
However, selection can be done at any time prior to logical design provided suffi-
cient information is available regarding system requirements such as performance,
ease of restructuring, security, and integrity constraints.

Although DBMS selection may be infrequent, as enterprise needs expand or exist-
ing systems are replaced, it may become necessary at times to evaluate new DBMS
products. In such cases, the aim is to select a system that meets the current and
future requirements of the enterprise, balanced against costs that include the pur-
chase of the DBMS product, any additional software/hardware required to support
the database system, and the costs associated with changeover and staff training.

A simple approach to selection is to check off DBMS features against require-
ments. In selecting a new DBMS product, there is an opportunity to ensure that
the selection process is well planned, and the system delivers real benefits to the
enterprise. In the following section we describe a typical approach to selecting the
“best” DBMS.

10.7.1 Selecting the DBMS
The main steps to selecting a DBMS are listed in Table 10.3.

Figure 10.5
Data modeling
and the ANSI-
SPARC
architecture.

360 Chapter 10 Database System Development Lifecycle

TABLE 10.3 Main steps to selecting a DBMS.

Define Terms of Reference of study
Shortlist two or three products
Evaluate products

Recommend selection and produce report

Define Terms of Reference of study

The Terms of Reference for the DBMS selection is established, stating the objectives
and scope of the study and the tasks that need to be undertaken. This document
may also include a description of the criteria (based on the users’ requirements
specification) to be used to evaluate the DBMS products, a preliminary list of pos-
sible products, and all necessary constraints and timescales for the study.

Shortlist two or three products

Criteria considered to be “critical” to a successful implementation can be used to
produce a preliminary list of DBMS products for evaluation. For example, the
decision to include a DBMS product may depend on the budget available, level of
vendor support, compatibility with other software, and whether the product runs on
particular hardware. Additional useful information on a product can be gathered
by contacting existing users, who may provide specific details on how good the ven-
dor support actually is, on how the product supports particular applications, and
whether certain hardware platforms are more problematic than others. There may
also be benchmarks available that compare the performance of DBMS products.
Following an initial study of the functionality and features of DBMS products, a
shortlist of two or three products is identified.

The World Wide Web is an excellent source of information and can be used to
identify potential candidate DBMSs. For example, InfoWorld’s online technology
test center (available at www.infoworld/test-center.com) provides a comprehensive
review of DBMS products. Vendors’ Web sites can also provide valuable information
on DBMS products.

Evaluate products

There are various features that can be used to evaluate a DBMS product. For the
purposes of the evaluation, these features can be assessed as groups (for example,
data definition) or individually (for example, data types available). Table 10.4 lists
possible features for DBMS product evaluation grouped by data definition, physi-
cal definition, accessibility, transaction handling, utilities, development, and other
features.

If features are checked oft simply with an indication of how good or bad each
is, it may be difficult to make comparisons between DBMS products. A more use-
ful approach is to weight features and/or groups of features with respect to their
importance to the organization, and to obtain an overall weighted value that can

TABLE 10.4 Features for DBMS evaluation.

DATA DEFINITION
Primary key enforcement
Foreign key specification
Data types available
Data type extensibility
Domain specification
Ease of restructuring
Integrity controls

View mechanism

Data dictionary

Data independence
Underlying data model
Schema evolution

ACCESSIBILITY

Query language: SQL2/SQL:201 I/ODMG
compliant

Interfacing to 3GLs
Multi-user
Security

« Access controls

+ Authorization mechanism
UTILITIES
Performance measuring
Tuning
Load/unload facilities
User usage monitoring
Database administration support

OTHER FEATURES

Upgradability

Vendor stability
User base

Training and user support

10.7 DBMS Selection

PHYSICAL DEFINITION
File structures available

File structure maintenance
Ease of reorganization
Indexing

Variable length fields/records
Data compression
Encryption routines
Memory requirements

Storage requirements

TRANSACTION HANDLING

Backup and recovery routines
Checkpointing facility

Logging facility

Granularity of concurrency

Deadlock resolution strategy
Advanced transaction models

Parallel query processing
DEVELOPMENT

4GL/5GL tools

CASE tools

Windows capabilities

Stored procedures, triggers, and rules

Web development tools

Interoperability with other DBMSs and other
systems

Web integration
Replication utilities
Distributed capabilities
(Continued)

361

362 Chapter 10 Database System Development Lifecycle

TABLE 10.4 (Continued)

OTHER FEATURES

Documentation Portability

Operating system required Hardware required

Cost Network support

Online help Object-oriented capabilities

Standards used Architecture (2- or 3-tier client/server)
Version management Performance

Extensibile query optimization Transaction throughput

Scalability Maximum number of concurrent users
Support for reporting and analytical tools XML and Web services support

be used to compare products. Table 10.5 illustrates this type of analysis for the
“Physical definition” group for a sample DBMS product. Each selected feature is
given a rating out of 10, a weighting out of 1 to indicate its importance relative
to other features in the group, and a calculated score based on the rating times
the weighting. For example, in Table 10.5 the feature “Ease of reorganization” is
given a rating of 4, and a weighting of 0.25, producing a score of 1.0. This feature
is given the highest weighting in this table, indicating its importance in this part
of the evaluation. Additionally, the “Ease of reorganization” feature is weighted,
for example, five times higher than the feature “Data compression” with the lowest
weighting of 0.05, whereas the two features “Memory requirements” and “Storage

TABLE 10.5 Analysis of features for DBMS product evaluation.

DBMS: Sample Product Vendor: Sample Vendor

Physical Definition Group

FEATURES COMMENTS RATING WEIGHTING SCORE
File structures available Choice of 4 8 0.15 12
File structure maintenance Not self-regulating 6 0.2 |2
Ease of reorganization 4 0.25 1.0
Indexing 6 0.15 0.9
Variable length fields/records 6 0.15 09
Data compression Specify with file structure 7 0.05 0.35
Encryption routines Choice of 2 4 0.05 02
Memory requirements 0 0.00 0
Storage requirements 0 0.00 0
Totals 41 1.0 5.75
Physical definition group 575 0.25 1.44

10.8 Application Design

requirements” are given a weighting of 0.00 and are therefore not included in this
evaluation.

We next sum all the scores for each evaluated feature to produce a total score for
the group. The score for the group is then itself subject to a weighting, to indicate
its importance relative to other groups of features included in the evaluation. For
example, in Table 10.5, the total score for the “Physical definition” group is 5.75;
however, this score has a weighting of 0.25.

Finally, all the weighted scores for each assessed group of features are
summed to produce a single score for the DBMS product, which is compared
with the scores for the other products. The product with the highest score is the
“winner".

In addition to this type of analysis, we can also evaluate products by allowing
vendors to demonstrate their product or by testing the products in-house. In-house
evaluation involves creating a pilot testbed using the candidate products. Each
product is tested against its ability to meet the users’ requirements for the database
system. Benchmarking reports published by the Transaction Processing Council
can be found at www.tpc.org.

Recommend selection and produce report

The final step of the DBMS selection is to document the process and to provide a
statement of the findings and recommendations for a particular DBMS product.

= 10.8 Application Design

-,
Application The design of the user interface and the application programs that
design use and process the database.

In Figure 10.1, observe that database and application design are parallel activities
of the database system development lifecycle. In most cases, it is not possible to
complete the application design until the design of the database itself has taken
place. On the other hand, the database exists to support the applications, and
so there must be a flow of information between application design and database
design.

We must ensure that all the functionality stated in the users’ requirements speci-
fication is present in the application design for the database system. This involves
designing the application programs that access the database and designing the
transactions, (that is, the database access methods). In addition to designing how
the required functionality is to be achieved, we have to design an appropriate
user interface to the database system. This interface should present the required
information in a user-friendly way. The importance of user interface design is
sometimes ignored or left until late in the design stages. However, it should be
recognized that the interface may be one of the most important components of the
system. If it is easy to learn, simple to use, straightforward and forgiving, the users
will be inclined to make good use of what information is presented. On the other
hand, if the interface has none of these characteristics, the system will undoubtedly
cause problems.

363

364 Chapter 10 Database System Development Lifecycle

In the following sections, we briefly examine two aspects of application design:
transaction design and user interface design.

10.8.1 Transaction Design

Before discussing transaction design, we first describe what a transaction represents.

An action, or series of actions, carried out by a single user or
Transaction application program, that accesses or changes the content of the
database.

Transactions represent “real-world” events such as the registering of a property for
rent, the addition of a new member of staff, the registration of a new client, and the
renting out of a property. These transactions have to be applied to the database to
ensure that data held by the database remains current with the “real-world” situa-
tion and to support the information needs of the users.

A transaction may be composed of several operations, such as the transfer of
money from one account to another. However, from the user’s perspective, these
operations still accomplish a single task. From the DBMS’s perspective, a trans-
action transfers the database from one consistent state to another. The DBMS
ensures the consistency of the database even in the presence of a failure. The
DBMS also ensures that once a transaction has completed, the changes made are
permanently stored in the database and cannot be lost or undone (without run-
ning another transaction to compensate for the effect of the first transaction). If
the transaction cannot complete for any reason, the DBMS should ensure that the
changes made by that transaction are undone. In the example of the bank trans-
fer, if money is debited from one account and the transaction fails before credit-
ing the other account, the DBMS should undo the debit. If we were to define the
debit and credit operations as separate transactions, then once we had debited
the first account and completed the transaction, we are not allowed to undo that
change (without running another transaction to credit the debited account with
the required amount).

The purpose of transaction design is to define and document the high-level char-
acteristics of the transactions required on the database, including:

- data to be used by the transaction;

+ functional characteristics of the transaction,;
« output of the transaction;

- importance to the users;

- expected rate of usage.

This activity should be carried out early in the design process to ensure that the
implemented database is capable of supporting all the required transactions. There
are three main types of transactions: retrieval transactions, update transactions, and
mixed transactions:

+ Retrieval transactions are used to retrieve data for display on the screen or in
the production of a report. For example, the operation to search for and display

10.8 Application Design

the details of a property (given the property number) is an example of a retrieval
transaction.

Update transactions are used to insert new records, delete old records, or modify
existing records in the database. For example, the operation to insert the details
of a new property into the database is an example of an update transaction.

Mixed transactions involve both the retrieval and updating of data. For exam-
ple, the operation to search for and display the details of a property (given the
property number) and then update the value of the monthly rent is an example
of a mixed transaction.

10.8.2 User Interface Design Guidelines

Before implementing a form or report, it is essential that we first design the layout.
Useful guidelines to follow when designing forms or reports are listed in Table 10.6
(Shneiderman et al., 2009).

Meaningful title

The information conveyed by the title should clearly and unambiguously identify
the purpose of the form/report.

Comprehensible instructions

Familiar terminology should be used to convey instructions to the user. The instruc-
tions should be brief, and, when more information is required, help screens should

TABLE 10.6 Guidelines for form/report design.

Meaningful title

Comprehensible instructions

Logical grouping and sequencing of fields

Visually appealing layout of the form/report
Familiar field labels

Consistent terminology and abbreviations
Consistent use of color

Visible space and boundaries for data entry fields
Convenient cursor movement

Error correction for individual characters and entire fields
Error messages for unacceptable values

Optional fields marked clearly

Explanatory messages for fields

Completion signal

365

366

Chapter 10 Database System Development Lifecycle

be made available. Instructions should be written in a consistent grammatical style,
using a standard format.

Logical grouping and sequencing of fields

Related fields should be positioned together on the form/report. The sequencing
of fields should be logical and consistent.

Visually appealing layout of the form/report

The form/report should present an attractive interface to the user. The form/report
should appear balanced with fields or groups of fields evenly positioned throughout
the form/report. There should not be areas of the form/report that have too few or
too many fields. Fields or groups of fields should be separated by a regular amount
of space. Where appropriate, fields should be vertically or horizontally aligned. In
cases where a form on screen has a hardcopy equivalent, the appearance of both
should be consistent.

Familiar field labels

Field labels should be familiar. For example, if Sex were replaced by Gender, it is
possible that some users would be confused.

Consistent terminology and abbreviations

An agreed list of familiar terms and abbreviations should be used consistently.

Consistent use of color

Color should be used to improve the appearance of a form/report and to highlight
important fields or important messages. To achieve this, color should be used
in a consistent and meaningful way. For example, fields on a form with a white
background may indicate data entry fields and those with a blue background may
indicate display-only fields.

Visible space and boundaries for data-entry fields

A user should be visually aware of the total amount of space available for each field.
This allows a user to consider the appropriate format for the data before entering
the values into a field.

Convenient cursor movement

A user should easily identify the operation required to move a cursor throughout
the form/report. Simple mechanisms such as using the Tab key, arrows, or the
mouse pointer should be used.

Error correction for individual characters and entire fields

A user should easily identify the operation required to make alterations to field
values. Simple mechanisms should be available, such as using the Backspace key
or overtyping.

10.10 Implementation

Error messages for unacceptable values

If a user attempts to enter incorrect data into a field, an error message should be
displayed. The message should inform the user of the error and indicate permis-
sible values.

Optional fields marked clearly

Optional fields should be clearly identified for the user. This can be achieved using
an appropriate field label or by displaying the field using a color that indicates the
type of the field. Optional fields should be placed after required fields.

Explanatory messages for fields

When a user places a cursor on a field, information about the field should appear
in a regular position on the screen, such as a window status bar.

Completion signal

It should be clear to a user when the process of filling in fields on a form is com-
plete. However, the option to complete the process should not be automatic, as the
user may wish to review the data entered.

10.9 Prototyping

|

At various points throughout the design process, we have the option to either fully
implement the database system or build a prototype.

Prototyping Building a working model of a database system.

A prototype is a working model that does not normally have all the required fea-
tures or provide all the functionality of the final system. The main purpose of devel-
oping a prototype database system is to allow users to use the prototype to identify
the features of the system that work well or are inadequate, and—if possible—to
suggest improvements or even new features to the database system. In this way, we
can greatly clarify the users’ requirements for both the users and developers of the
system and evaluate the feasibility of a particular system design. Prototypes should
have the major advantage of being relatively inexpensive and quick to build.
There are two prototyping strategies in common use today: requirements proto-
typing and evolutionary prototyping. Requirements prototyping uses a prototype to
determine the requirements of a proposed database system, and once the require-
ments are complete, the prototype is discarded. Although evolutionary prototyping
is used for the same purposes, the important difference is that the prototype is not
discarded, but with further development becomes the working database system.

10.10 Implementation

|

The physical realization of the database and application

Impl tati .
mplementation ‘ designs.

367

368

Chapter 10 Database System Development Lifecycle

On completion of the design stages (which may or may not have involved proto-
typing), we are now in a position to implement the database and the application
programs. The database implementation is achieved using the DDL of the selected
DBMS or a GUI, which provides the same functionality while hiding the low-level
DDL statements. The DDL statements are used to create the database structures
and empty database files. Any specified user views are also implemented at this
stage.

The application programs are implemented using the preferred third- or fourth-
generation language (3GL or 4GL). Parts of these application programs are the
database transactions, which are implemented using the DML of the target DBMS,
possibly embedded within a host programming language, such as Visual Basic
(VB), VB.net, Python, Delphi, C, C++, C#, Java, COBOL, Fortran, Ada, or Pascal.
We also implement the other components of the application design such as menu
screens, data entry forms, and reports. Again, the target DBMS may have its own
fourth-generation tools that allow rapid development of applications through the
provision of nonprocedural query languages, reports generators, forms generators,
and application generators.

Security and integrity controls for the system are also implemented. Some of
these controls are implemented using the DDL, but others may need to be defined
outside the DDL, using, for example, the supplied DBMS utilities or operating sys-
tem controls. Note that SQL is both a DML and a DDL, as described in Chapters
6, 7, and 8.

10.11 Data Conversion and Loading

[

Data conversion Transferring any existing data into the new database and con-
and loading verting any existing applications to run on the new database.

This stage is required only when a new database system is replacing an old system.
Nowadays, it is common for a DBMS to have a utility that loads existing files into
the new database. The utility usually requires the specification of the source file
and the target database, and then automatically converts the data to the required
format of the new database files. Where applicable, it may be possible for the devel-
oper to convert and use application programs from the old system for use by the
new system. Whenever conversion and loading are required, the process should be
properly planned to ensure a smooth transition to full operation.

10.12 Testing

The process of running the database system with the intent of finding

TeStlng ‘ €rTors.

Before going live, the newly developed database system should be thoroughly
tested. This is achieved using carefully planned test strategies and realistic data, so
that the entire testing process is methodically and rigorously carried out. Note that
in our definition of testing we have not used the commonly held view that testing
is the process of demonstrating that faults are not present. In fact, testing cannot

10.13 Operational Maintenance

show the absence of faults; it can show only that software faults are present. If test-
ing is conducted successfully, it will uncover errors with the application programs
and possibly the database structure. As a secondary benefit, testing demonstrates
that the database and the application programs appear to be working according
to their specification and that performance requirements appear to be satisfied. In
addition, metrics collected from the testing stage provide a measure of software
reliability and software quality.

As with database design, the users of the new system should be involved in the
testing process. The ideal situation for system testing is to have a test database on
a separate hardware system, but often this is not possible. If real data is to be used,
it is essential to have backups made in case of error.

Testing should also cover usability of the database system. Ideally, an evaluation
should be conducted against a usability specification. Examples of criteria that can
be used to conduct the evaluation include the following (Sommerville, 2010):

+ Learnability: How long does it take a new user to become productive with the
system?
+ Performance: How well does the system response match the user’s work practice?
+ Robustness: How tolerant is the system of user error?
+ Recoverability: How good is the system at recovering from user errors?
+ Adapatability: How closely is the system tied to a single model of work?
Some of these criteria may be evaluated in other stages of the lifecycle. After test-

ing is complete, the database system is ready to be “signed off” and handed over
to the users.

-

-

- . .

= 10.13 Operational Maintenance

| S—
Operational The process of monitoring and maintaining the database system
maintenance following installation.

In the previous stages, the database system has been fully implemented and tested.
The system now moves into a maintenance stage, which involves the following
activities:

+ Monitoring the performance of the system. If the performance falls below an
acceptable level, tuning or reorganization of the database may be required.

+ Maintaining and upgrading the database system (when required). New require-
ments are incorporated into the database system through the preceding stages of

the lifecycle.

Once the database system is fully operational, close monitoring takes place to
ensure that performance remains within acceptable levels. A DBMS normally pro-
vides various utilities to aid database administration, including utilities to load data
into a database and to monitor the system. The utilities that allow system monitor-
ing give information on, for example, database usage, locking efficiency (includ-
ing number of deadlocks that have occurred, and so on), and query execution
strategy. The DBA can use this information to tune the system to give better

369

370

Chapter 10 Database System Development Lifecycle

performance; for example, by creating additional indexes to speed up queries, by
altering storage structures, or by combining or splitting tables.

The monitoring process continues throughout the life of a database system and
in time may lead to reorganization of the database to satisfy the changing require-
ments. These changes in turn provide information on the likely evolution of the
system and the future resources that may be needed. This, together with knowledge
of proposed new applications, enables the DBA to engage in capacity planning and
to notify or alert senior staff to adjust plans accordingly. If the DBMS lacks certain
utilities, the DBA can either develop the required utilities in-house or purchase
additional vendor tools, if available. We discuss database administration in more
detail in Chapter 20.

When a new database system is brought online, the users should operate it in
parallel with the old system for a period of time. This approach safeguards current
operations in case of unanticipated problems with the new system. Periodic checks
on data consistency between the two systems need to be made, and only when both
systems appear to be producing the same results consistently should the old sys-
tem be dropped. If the changeover is too hasty, the end-result could be disastrous.
Despite the foregoing assumption that the old system may be dropped, there may
be situations in which both systems are maintained.

10.14 CASE Tools

-,

The first stage of the database system development lifecycle—database planning—
may also involve the selection of suitable Computer-Aided Software Engineering
(CASE) tools. In its widest sense, CASE can be applied to any tool that supports
software development. Appropriate productivity tools are needed by data admin-
istration and database administration staff to permit the database development
activities to be carried out as efficiently and effectively as possible. CASE support
may include:

- a data dictionary to store information about the database system’s data;
- design tools to support data analysis;

+ tools to permit development of the corporate data model, and the conceptual
and logical data models;

« tools to enable the prototyping of applications.

CASE tools may be divided into three categories: upper-CASE, lower-CASE, and
integrated-CASE, as illustrated in Figure 10.6. Upper-CASE tools support the ini-
tial stages of the database system development lifecycle, from planning through to
database design. Lower-CASE tools support the later stages of the lifecycle, from
implementation through testing, to operational maintenance. Integrated-CASE
tools support all stages of the lifecycle and thus provide the functionality of both
upper- and lower-CASE in one tool.

Benefits of CASE

The use of appropriate CASE tools should improve the productivity of developing
a database system. We use the term “productivity” to relate both to the efficiency
of the development process and to the effectiveness of the developed system.

10.14 CASE Tools 371

Database A A

planning
System definition
Requirements
collection and analysis Upper-CASE
Database design Apdpllqatlon
esign
X Integrated-CASE
Prototyping Implementation
Data conversion
and loading Lower-CASE
Testing
Operational
maintenance v v

Figure 10.6 Application of CASE tools.

Efficiency refers to the cost, in terms of time and money, of realizing the database
system. CASE tools aim to support and automate the development tasks and thus
improve efficiency. Effectiveness refers to the extent to which the system satisfies the
information needs of its users. In the pursuit of greater productivity, raising the
effectiveness of the development process may be even more important than increas-
ing its efficiency. For example, it would not be sensible to develop a database system
extremely efficiently when the end-product is not what the users want. In this way,
effectiveness is related to the quality of the final product. Because computers are bet-
ter than humans at certain tasks—for example, consistency checking—CASE tools
can be used to increase the effectiveness of some tasks in the development process.
CASE tools provide the following benefits that improve productivity:

« Standards: CASE tools help to enforce standards on a software project or
across the organization. They encourage the production of standard test

372

Chapter 10 Database System Development Lifecycle

components that can be reused, thus simplifying maintenance and increasing
productivity.

Integration: CASE tools store all the information generated in a repository, or
data dictionary. Thus, it should be possible to store the data gathered during
all stages of the database system development lifecycle. The data then can be
linked together to ensure that all parts of the system are integrated. In this way,
an organization’s information system no longer has to consist of independent,
unconnected components.

Support for standard methods: Structured techniques make significant use of dia-
grams, which are difficult to draw and maintain manually. CASE tools simplify
this process, resulting in documentation that is correct and more current.

Consistency: Because all the information in the data dictionary is interrelated,
CASE tools can check its consistency.

Automation: Some CASE tools can automatically transform parts of a design speci-
fication into executable code. This feature reduces the work required to produce
the implemented system, and may eliminate errors that arise during the coding
process.

Chapter Summary

An information system is the resources that enable the collection, management, control, and dissemination of
information throughout an organization.

A computer-based information system includes the following components: database, database software, application
software, computer hardware (including storage media), and personnel using and developing the system.

The database is a fundamental component of an information system, and its development and usage should be
viewed from the perspective of the wider requirements of the organization. Therefore, the lifecycle of an organi-
zational information system is inherently linked to the lifecycle of the database that supports it.

The main stages of the database system development lifecycle include: database planning, system defini-

tion, requirements collection and analysis, database design, DBMS selection (optional), application design, proto-
typing (optional), implementation, data conversion and loading, testing, and operational maintenance.

Database planning involves the management activities that allow the stages of the database system develop-
ment lifecycle to be realized as efficiently and effectively as possible.

System definition involves identifying the s